

Introduction to electron and photon beam physics

Zhirong Huang SLAC and Stanford University

August 03, 2015

Lecture Plan

Electron beams (1.5 hrs)

Photon or radiation beams (1 hr)

References:

- 1. J. D. Jackson, Classical Electrodynamics (Wiley, New York, third edition, 1999).
- 2. Helmut Wiedemann, Particle Accelerator Physics (Springer-Verlag, 2003).
- 3. Andrew Sessler and Edmund Wilson, Engine of Discovery (World Scientific, 2007).
- 4. David Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge, 1999)
- 5. Peter Schmüser, Martin Dohlus, Jörg Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers (Springer-Verlag, 2008).
- 6. Kwang-Je Kim, Zhirong Huang, Ryan Lindberg, Synchrotron Radiation and Free-Electron Lasers for Bright X-ray Sources, USPAS lecture notes 2013.
- 7. Gennady Stupakov, Classical Mechanics and Electromagnetism in Accelerator Physics, USPAS Lecture notes 2011.
- 8. Images from various sources and web sites.

Electron beams

- Primer on special relativity and E&M
- Accelerating electrons
- Transporting electrons
- Beam emittance and optics
 - Beam distribution function

Length Contraction and Time Dilation

Length contraction: an object of length ∆z* aligned in the moving system with the z* axis will have the length ∆z in the lab frame

$$\Delta z = \frac{\Delta z^*}{\gamma}$$

Time dilation: Two events occurring in the moving system at the same point and separated by the time interval ∆t* will be measured by the lab observers as separated by ∆t

$$\Delta t = \gamma \Delta t^*$$

Energy, Mass, Momentum

 $1eV = 1.6 \times 10^{-19}$ Joule

Momentum

$$\boldsymbol{p} = \gamma \boldsymbol{\beta} m c$$

Energy and momentum

$$E^{2} = p^{2}c^{2} + m^{2}c^{4},$$

$$E = \gamma mc^{2}.$$

Relativistic acceleration

Momentum change

$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = m\gamma \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} + m\boldsymbol{v}\frac{\mathrm{d}\gamma}{\mathrm{d}t} \,.$$

With

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}\beta} \frac{1}{\sqrt{1-\beta^2}} \frac{\mathrm{d}\beta}{\mathrm{d}t} = \gamma^3 \frac{\beta}{c} \frac{\mathrm{d}v}{\mathrm{d}t}$$

we get the equation of motion

$$\boldsymbol{F} = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = m \left(\gamma \, \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} + \gamma^3 \, \frac{\beta}{c} \, \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} \, \boldsymbol{v} \right) \,.$$

For a force parallel to the particle propagation \boldsymbol{v} we have $\dot{\boldsymbol{v}}\boldsymbol{v} = \dot{\boldsymbol{v}}\boldsymbol{v}$ and

$$\frac{\mathrm{d}\boldsymbol{p}_{\parallel}}{\mathrm{d}t} \;=\; m\,\gamma\,\left(1+\gamma^2\beta\,\frac{v}{c}\right)\,\frac{\mathrm{d}\boldsymbol{v}_{\parallel}}{\mathrm{d}t} \;=\; m\gamma^3\,\frac{\mathrm{d}\boldsymbol{v}_{\parallel}}{\mathrm{d}t}$$

On the other hand, if the force is directed normal to the particle propagation we have $\dot{v} = 0$ and (1.18) reduces to

$$rac{\mathrm{d} oldsymbol{p}_{\perp}}{\mathrm{d} t} \;=\; m\,\gamma\,rac{\mathrm{d} oldsymbol{v}_{\perp}}{\mathrm{d} t}\,.$$

- Beam dynamics drastically different for parallel and perpendicular acceleration!
- Negligible radiation for parallel acceleration at high energy,

Maxwell's Equations

$$egin{aligned}
abla \cdot oldsymbol{D} &=
ho \
abla \cdot oldsymbol{B} &= 0 \
abla \times oldsymbol{E} &= -rac{\partial oldsymbol{B}}{\partial t} \
abla imes oldsymbol{H} &= oldsymbol{j} + rac{\partial oldsymbol{D}}{\partial t} \end{aligned}$$

$$D = \epsilon_0 E$$
$$B = \mu_0 H$$

$$c = (\epsilon_0 \mu_0)^{-1/2}$$

$$Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 377 \text{ Ohm}$$

Wave equation

$$\left(\frac{\partial^2}{\partial t^2} - c^2 \nabla^2\right) \boldsymbol{E} = -\frac{1}{\epsilon_0} \left(\frac{\partial \boldsymbol{j}}{\partial t} + c^2 \nabla \rho\right)$$

Lorentz transformation of fields

$$egin{aligned} E_z &= E_z'\,, \qquad oldsymbol{E}_\perp &= \gamma \left(oldsymbol{E}_\perp' - oldsymbol{v} imes oldsymbol{B}'
ight)\,, \ B_z &= B_z'\,, \qquad oldsymbol{B}_\perp &= \gamma \left(oldsymbol{B}_\perp' + rac{1}{c^2}oldsymbol{v} imes oldsymbol{E}'
ight)\,, \end{aligned}$$

Field of a moving electron

In electron's frame, Coulomb field is

$$\boldsymbol{E}' = \frac{1}{4\pi\epsilon_0} \frac{e\boldsymbol{r}'}{r'^3}$$

In lab frame, space charge fields are

$$E_{x} = \frac{1}{4\pi\epsilon_{0}} \frac{e\gamma x}{[x^{2} + y^{2} + \gamma^{2}(z - vt)^{2}]^{3/2}}$$

$$E_{y} = \frac{1}{4\pi\epsilon_{0}} \frac{e\gamma y}{[x^{2} + y^{2} + \gamma^{2}(z - vt)^{2}]^{3/2}}$$

$$E_{z} = \frac{1}{4\pi\epsilon_{0}} \frac{e\gamma(z - vt)}{[x^{2} + y^{2} + \gamma^{2}(z - vt)^{2}]^{3/2}}$$

$$B = \frac{1}{c^{2}} \mathbf{v} \times \mathbf{E}$$

Lorentz Force

Lorentz force

$$F = eE + ev \times B$$

Momentum and energy change

$$\Delta \boldsymbol{p} = \int \boldsymbol{F} dt$$
$$\Delta E = \int \boldsymbol{F} d\boldsymbol{s} \qquad d\boldsymbol{s} = \boldsymbol{v} dt$$

Energy exchange through *E* field only

$$\Delta E = \int \mathbf{F} d\mathbf{s} = e \int \mathbf{E} \cdot d\mathbf{s} + e \int (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{v} dt$$

No work done by magnetic field!

Guiding beams: dipole

Bending radius is obtained by balance the forces

$$\frac{1}{\rho} = \frac{eB}{\gamma\beta mc^2}$$

$$\frac{1}{\rho}$$
 [m⁻¹]=0.2998 $\frac{B[T]}{\beta E[GeV]}$

Cyclotron

If beam moves circularly, re-traverses the same accelerating section again and again, we can accelerate the beam repetitively

Ernest O. Lawrence in 1930

The first cyclotron with a diameter of 5 inches

[Ref.]: Photography gallery of Lawrence Berkeley National Laboratory, http://cso.lbl.gov/photo/gallery/ Lawrence started to construct a cyclotron, as the machine later was named, in early 1930. A graduate student, M. Stanley Livingston, did much of the work of translating the idea into working hardware. In January 1931 Lawrence and Livingston met their first success. A device about 4.5 inches in diameter used a potential of 1,800 volts to accelerate hydrogen ions up to energies of 80,000 electron volts. Lawrence immediately started planning for a bigger machine. In summer 1931 an eleven-inch cyclotron achieved a million volts.

"Dr Livingston has asked me to advise you that he has obtained 1,100,000 volt protons. He also suggested that I add 'Whoopee'!"

—Telegram to Lawrence, http://www.aip.org/history/lawrence/first.htm 3 August 1931

Lawrence was my teacher when I built the first cyclotron. He got a Nobel prize for it. I got a Ph.D. (- S. Livingston, years later)

From Cyclotron to Synchrotron

Cyclotron does not work for relativistic beams.

Synchrotron

GE synchrotron observed first synchrotron radiation (1946) and opened a new era of accelerator-based light sources.

The first purpose-built synchrotron to operate was built with a glass vacuum chamber

Electron linac

The rf energy is used to launch a traveling wave or standing wave in an array of cavities.

[Ref.] http://www.slac.stanford.edu

(notice how far the bunches have moved)

Disk loaded structure made at Stanford Univ. (1947)

SLAC linac

Stanford Linear Accelerator Center (SLAC)

Livingston Plot for High-Energy Accelerators

Linac Coherent Light Source (LCLS) at SLAC X-FEL based on last 1-km of existing 3-km linac 1.5-15 Å Proposed by C. Pellegrini in 1992 Injector (35°) (14-4.3 GeV) at 2-km point

> Existing 1/3 Linac (1 km) (with modifications)

New e⁻ Transfer Line (340 m)

X-raý Transport Line (200 m)

– Undulator (130 m) – Near Experiment Ha

Beam description

Beam phase space $(x, x', y, y', \Delta t, \Delta \gamma)$

$$x' \equiv \frac{dx}{dz} = \frac{dx/dt}{dz/dt} = \frac{1}{v_z} \frac{dx}{dt}$$

$$\Delta \gamma_j \equiv \gamma_j - \gamma_0$$

Consider paraxial beams such that

$$\left| \boldsymbol{x}' \right| = \sqrt{{x'}^2 + {y'}^2} \approx \frac{1}{c} \sqrt{v_x^2 + v_y^2} \ll 1$$

Linear optics for beam transport

Transport matrix

$$\begin{bmatrix} x \\ x' \end{bmatrix}_{o} = \mathsf{M}(z_{\mathrm{i}}, z_{\mathrm{o}}) \begin{bmatrix} x \\ x' \end{bmatrix}_{\mathrm{i}}$$

Free space drift

$$\begin{bmatrix} x \\ x' \end{bmatrix}_{\mathbf{o}} = \begin{bmatrix} 1 & \ell \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix}_{\mathbf{i}} \equiv \mathsf{M}_{\ell} \begin{bmatrix} x \\ x' \end{bmatrix}_{\mathbf{i}}$$

Quadrupole (de-)focusing

$$\begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_{0} = \mathsf{M}_{f} \begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1/f & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/f & 1 \end{bmatrix} \begin{bmatrix} x \\ x' \\ y \\ y' \end{bmatrix}_{i}$$

24

Beam properties

Second moments of beam distribution

Beam emittance

Emittance or geometric emittance

$$\varepsilon_x \equiv \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle}$$

Emittance is **conserved** in a **linear** transport system

Normalized emittance is conserved in a linear system including acceleration

$$\varepsilon_{x,n} = \beta_z \gamma \varepsilon_x \approx \gamma \varepsilon_x$$

Normalized emittance is hence an important figure of merit for electron sources

Preservation of emittances is critical for accelerator designs.

Beam optics function

Optics functions (Twiss parameters)

$$\beta_x = \frac{\langle x^2 \rangle}{\varepsilon_x} \qquad \qquad \gamma_x = \frac{\langle x'^2 \rangle}{\varepsilon_x} \qquad \qquad \alpha_x = -\frac{\langle xx' \rangle}{\varepsilon_x}$$

$$\beta_x \gamma_x - \alpha_x^2 = 1$$

Given beta function along beamline

$$\sigma_x(z) = \sqrt{\varepsilon_x \beta_x(z)}$$

Free space propagation

$$\sigma_x(z) = \sqrt{\varepsilon_x \beta_x(z)} = \sqrt{\varepsilon_x \left(\beta_x^* + \frac{z^2}{\beta_x^*}\right)}.$$

Analogous with Gaussian laser beam

ε

$$_x \leftrightarrow \frac{\lambda}{4\pi} \qquad \qquad \beta_x^* \leftrightarrow Z_R.$$

FODO lattice

Multiple elements (e. g., FODO lattice)

$$\mathsf{M} = \mathsf{M}_N \, \mathsf{M}_{N-1} \, \dots \, \mathsf{M}_2 \, \mathsf{M}_1$$

FODO lattice II

For periodic motion we have $\beta_x(0) = \beta_x(2\ell)$ and $\gamma_x(0) = \gamma_x(2\ell)$, while vanishing correlation α_x at the two planes implies that $\beta_x(0) = 1/\gamma_x(0)$

Maximum beta

$$\beta_x(0) = 2\sqrt{\frac{2f^3 + f^2\ell}{2f - \ell}} \approx 2|f|\left(1 + \frac{\ell}{2f}\right)$$

Minimum beta

$$\beta_x(\ell) \approx 2 |f| \left(1 - \frac{\ell}{2f}\right)$$

When *f* >> *l*

$$\beta_x(z) \approx \bar{\beta}_x = 2f \qquad \longrightarrow \qquad \left\langle x^2 \right\rangle \approx 2\varepsilon_x f$$
$$\gamma_x(z) \approx \frac{2}{\bar{\beta}_x} = \frac{1}{f} \qquad \longrightarrow \qquad \left\langle x'^2 \right\rangle \approx \frac{\varepsilon_x}{f}$$
$$\alpha_x^2(z) \approx \bar{\beta}_x \bar{\gamma}_x - 1 = 1 \qquad \longrightarrow \qquad \left\langle xx' \right\rangle \approx \pm \varepsilon_x.$$

30

Electron distribution in phase space

We define the distribution function F so that

$$N_e F(\Delta t, \Delta \gamma, \boldsymbol{x}, \boldsymbol{x}'; z) \, d\boldsymbol{x} d\boldsymbol{x}' d(\Delta t) d(\Delta \gamma)$$

is the number of electrons per unit phase space volume

Since the number of electrons is an invariant function of *z*, distribution function satisfies Liouville theorem

$$\frac{d}{dz}F = \left[\frac{\partial}{\partial z} + (\Delta t)'\frac{\partial}{\partial \Delta t} + (\Delta \gamma)'\frac{\partial}{\partial \Delta \gamma} + \mathbf{x}' \cdot \frac{\partial}{\partial \mathbf{x}} + \mathbf{x}'' \cdot \frac{\partial}{\partial \mathbf{x}'}\right]F = 0$$

Gaussian beam distribution

Represent the ensemble of electrons with a continuous distribution function (e.g., Gaussian in x and x')

$$F(x, x'; z) = \frac{1}{2\pi\varepsilon_x} \exp\left\{-\frac{1}{2\varepsilon_x} \left[\gamma_x(z)x^2 + \beta_x(z)x'^2 + 2\alpha_x(z)xx'\right]\right\}$$

For free space propagation

$$\beta_x(z) = \beta_x^* + \frac{z^2}{\beta_x^*}$$

$$F(x, x'; z) = \frac{1}{2\pi\varepsilon_x} \exp\left[-\frac{(x - x'z)^2}{2\beta_x^*\varepsilon_x} - \frac{{x'}^2}{2\varepsilon_x/\beta_x^*}\right]$$

Distribution in physical space can be obtained by integrating F over the angle

$$\int dx' F(x, x'; z) = \frac{\exp\left[-\frac{x^2}{2\sigma_x^{*2}(1+z^2/\beta_x^{*2})}\right]}{\sqrt{2\pi} \sigma_x^{*}\sqrt{1+z^2/\beta_x^{*2}}}$$

Photon or radiation beams
Introduction to radiation

Radiation diffraction and emittance

Coherence and Brightness

Radiation intensity and bunching

Accelerator based light sources

Photon wavelength and energy

Opportunities for Tunable Source of Radiation

Radiation from Accelerated Electrons

If the charge was moved twice, then the field lines at time t > t1 would look like this—there will be two spheres, with the radiation layers between them

Three forms of synchrotron radiation

Shintake Radiation Demo Program

Radiation propagation and diffraction

Wave propagation in free space

$$\left[\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial x^2} + k^2\right] E_{\omega}(\boldsymbol{x}; z) = 0, \quad k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$$

Angular representation

$$\mathcal{E}_{\omega}(\boldsymbol{\phi}; z) = \frac{1}{\lambda^2} \int d\boldsymbol{x} \ e^{-ik\boldsymbol{\phi}\cdot\boldsymbol{x}} E_{\omega}(\boldsymbol{x}; z)$$
$$E_{\omega}(\boldsymbol{x}; z) = \int d\boldsymbol{\phi} \ e^{ik\boldsymbol{\phi}\cdot\boldsymbol{x}} \mathcal{E}_{\omega}(\boldsymbol{\phi}; z).$$

General solution

$$E_{\omega}(\boldsymbol{x};z) = \int d\boldsymbol{\phi} \, \exp\left[ik(\boldsymbol{\phi}\cdot\boldsymbol{x}\pm z\sqrt{1-\phi^2})\right] \mathcal{E}_{\omega}(\boldsymbol{\phi};0)$$

Paraxial approximation ($\phi^2 << 1$)

$$\mathcal{E}_{\omega}(\boldsymbol{\phi}; z) = e^{ik(1-\phi^2/2)z} \mathcal{E}_{\omega}(\boldsymbol{\phi}; 0)$$

Gaussian beam and radiation emittance

■ Single electron radiation can be approximated by Gaussian beam → Gaussian fundamental mode at waist z=0

$$E(x;0) = E_0 \exp\left(-\frac{x^2}{4\sigma_r^2}\right)$$
$$\mathcal{E}(\phi;0) = \mathcal{E}_0 \exp\left(-\frac{\phi^2}{4\sigma_{r'}^2}\right)$$

$$\sigma_r \sigma_{r'} = \frac{\lambda}{4\pi} \equiv \varepsilon_r$$

At arbitrary *z*

$$E(x;z) = \frac{E_0}{\sqrt{1 + i\sigma_{r'}z/\sigma_r}} \exp\left[-\frac{x^2}{4\sigma_r^2(1 + i\sigma_{r'}z/\sigma_r)}\right]$$
$$= \frac{E_0}{\left(1 + z^2/Z_R^2\right)^{1/4}} \exp\left[-\frac{x^2(1 - iz/Z_R)}{4\sigma_r^2(1 + z^2/Z_R^2)} - \frac{i}{2}\tan^{-1}\left(\frac{z}{Z_R}\right)\right]$$
$$\sigma_r(z) = \sqrt{\frac{\lambda}{4\pi}} \left(Z_R + \frac{z^2}{Z_R^2}\right) \qquad Z_R \equiv \sigma_r/\sigma_{r'} = 2k\sigma_r^2$$
Analogous with electron beam
$$\varepsilon_x \leftrightarrow \frac{\lambda}{4\pi} \qquad \beta_x^* \leftrightarrow_{40} Z_R.$$

Coherence

Transverse (Spatial) Coherence

- Transverse coherence can be measured via the interference pattern in Young's double slit experiment.
- Near the center of screen, transverse coherence determines fringe visibility

42

Phase space criteria for transverse coherence

- Initial phase space area $4\pi R >> \lambda$
- Final phase space area $|4Ra/D \lesssim \lambda/2|$
- Coherent flux is reduced by M_{τ}
- Show this criteria from physical optics argument

Temporal Coherence

Define a coherence length ℓ_{coh} as the distance of propagation over which radiation of spectral width $\Delta\lambda$ becomes 180° out of phase. For a wavelength λ propagating through N cycles

$$\ell_{\rm coh} = N\lambda$$

and for a wavelength $\lambda + \Delta \lambda$, a half cycle less $(N - \frac{1}{2})$

$$\ell_{\rm coh} = (N - \frac{1}{2}) (\lambda + \Delta \lambda)$$

Equating the two

$$N = \lambda/2\Delta\lambda$$

so that

$$\ell_{\rm coh} = \frac{\lambda^2}{2 \ \Delta \lambda}$$

Chaotic light

Radiation from many random emitters (Sun, SR, SASE FEL)

Correlation function and coherence time

$$\mathcal{C}(\tau) \equiv \frac{\left\langle \int dt \; E(t) E^*(t+\tau) \right\rangle}{\left\langle \int dt \; |E(t)|^2 \right\rangle}$$

$$t_{\rm coh} \equiv \int dt \ |\mathcal{C}(\tau)|^2$$

Temporal mode and fluctuation

Number of regular temporal regions is # of coherent modes

$$M_L \approx \frac{T}{t_{\rm coh}} = \frac{T}{2\sqrt{2\pi}\sigma_{\tau}} \approx \frac{T}{5\sigma_{\tau}}.$$

Intensity fluctuation $\frac{\Delta W}{W} = \frac{1}{\sqrt{M_L}}$

Same numbers of mode in frequency domain

$$E_{\omega} = \frac{e_0 \sigma_{\tau}}{\sqrt{\pi}} \sum_{j=1}^{N_e} \exp\left[-\frac{(\omega - \omega_1)^2}{4\sigma_{\omega}^2} + i\omega t_j\right]$$
$$c\sigma_{\tau} \cdot \frac{\sigma_{\omega}}{\omega_1} = \frac{\lambda_1}{4\pi}, \text{ Fourier limit, minimum longitudinal phase space}$$

Longitudinal phase space is M_L larger than Fourier limit

• Total # of modes $M = M_L M_T^2$.

Light Bulb vs. Laser

Radiation emitted from light bulb is chaotic.

Pinhole can be used to obtain spatial coherence.

Monochromator can be used to obtain temporal coherence.

Pinhole and Monochromator can be combined for coherence.

Laser light is spatially and temporally coherent.

A. Schawlow (Nobel prize on laser spectroscopy), Scientific Americans, 1968

Brightness

Units: photons/s/mm²/mrad²/0.1%BW

Incoherent radiation from many electrons

Such a beam can be described by the convolution of the coherent Gaussian beam with the electron distribution in phase space

Effective source size and divergence

$$\Sigma_x = \sqrt{\sigma_x^2 + \sigma_r^2} \qquad \qquad \Sigma_{x'} = \sqrt{\sigma_{x'}^2 + \sigma_{r'}^2}.$$

When electron beam emittance $\sigma_x \sigma_{x'} >> \lambda/(4\pi)$ \uparrow

$$\Sigma_x \Sigma_{x'} \gg \frac{\lambda}{4\pi}$$

of transverse modes

$$M_T = \frac{\Sigma_x \Sigma_{x'}}{\lambda/4\pi} = \frac{\varepsilon_x}{\varepsilon_r}$$

Evolution of X-ray Light Sources

GE synchrotron (1946) opened a new era of accelerator-based light sources.

- These light sources have evolved rapidly over four generations.
- The first three-generations are based on synchrotron radiation.
- The forth-generation light source is a game-changer based on FELs.
 - The dramatic improvement of brightness and coherence over 60 years easily outran Moore's law.

Synchrotron Radiation Facilities

State-of-art storage rings have pulse duration ~10 ps, emittance ~1 nm.
 Diffraction-limited storage rings with emittance ~10 pm are under active R&D.

Radiation intensity

What if emitters are not random in time

$$\left\langle \left| E(\omega) \right|^2 \right\rangle = \left| E_{\omega}^0 \right|^2 \left\langle \left| \sum_{j=1}^{N_e} e^{i\omega t_j} \right|^2 \right\rangle$$

$$\left\langle \left| \sum_{j=1}^{N_e} e^{i\omega t_j} \right|^2 \right\rangle = N_e + \left\langle \sum_{j\neq k}^{N_e} e^{i\omega(t_j - t_k)} \right\rangle \qquad \left\langle \left| \sum_{j\neq k}^{N_e} e^{i\omega(t_j - t_k)} \right|^2 \right\rangle = N_e(N_e - 1) \left| \int dt \ f(t) e^{i\omega t} \right|^2$$

For an electron bunch with rms bunch length σ_e

$$f(t) = \frac{1}{\sqrt{2\pi}\sigma_e} \exp\left(-\frac{t^2}{2\sigma_e^2}\right)$$
$$\left\langle \left|E(\omega)\right|^2 \right\rangle = N_e \left|E_{\omega}^0\right|^2 \left[1 + (N_e - 1)e^{-\omega^2 \sigma_e^2}\right]$$

When $(N_e - 1)e^{-\omega^2 \sigma_e^2} \ll 1$ intensity from many electrons add incoherently (~ N_e)

Bunching and coherent radiation

If the bunch length is shorter than the radiation wavelength

 $(N_e - 1)e^{-\omega^2 \sigma_e^2} \ge 1$

$$\left\langle \left| E(\omega) \right|^2 \right\rangle = N_e \left| E_{\omega}^0 \right|^2 \left(1 + (N_e - 1) \left| f(\omega) \right|^2 \right)$$

Form factor or bunching factor

- Radiation intensity from many electrons add coherently (~N_e²)
- Another way to produce bunching from a relatively long bunch is through so-called microbunching

