# **SSSEPB 2015** Linacs and Bunch Compressors



#### **Schedule**

Wednesday, Aug Monday, Aug 3 Tuesday, Aug 4 Thursday, Aug 6 Friday, Aug 7 5 Introduction - C. 8:30 Linacs and Bunch Pellegrini (0.5) Electron Beam Compressors - T. Presentations Introduction to Diagnostics - T. (1.5)9:00 Raubenheimer Science with FELs FEL Physics - A. Maxwell (1.5) (1.5)- J. Hastings (1) Marinelli (2) 9:30 Break (0.5) 10:00 Break (0.5) Break (0.5) Break (0.5) Break (0.5) 10:30 Electron and Linacs and Bunch Science and Photon Beam 11:00 Photon Beam Compressors - T. Presentations Technology of Lines, D. Cocco Physics - Z. Huang Raubenheimer (1.5)Undulator (1.5)(1.5)(1.5)Magnets - S. 11:30 Prestemon (1) 12:00 Lunch (1) Lunch (1) Lunch (1) Lunch (1) Lunch (1) 12:30 Advanced Electron and 13:00 Laser/Plasma Photon Beam Accelerators and Physics - Z. Huang Applications - M. High Brightness 13:30 (1)Tours - LCLS, Presentations Hogan (1) Electron Sources NLCTA, ASTA (2) (2)- D. Dowell (2) Intro to Advanced FEL 14:00 presentation topics Topics - E. & working groups -Hemsing (1) 14:30 G. Marcus (1)

SSSEPB, August 2015

#### **Topics**

Acceleration **RF** Cavities NCRF and SCRF Technology **Emittance Preservation** Phase Space and 6D Emittance Synchrotron Radiation Wakefields **Bunch Compression** Linear and Nonlinear Optics Space Charge and Wakefields Micro-bunching effects



#### **Beam Emittance (2D projection)**



Note not relativistic parameters  $\gamma$  and  $\beta$ 

#### Phase Space Map evolution of the beam

Liouville Theorem:

• conservative forces  $\rightarrow$  6D phase space density is conserved but ...



Fig. 6.6. Evolution of the phase ellipse along a drift space

#### **Emittance Dilutions**

Dave works very hard to make small emittance and Ago needs small emittance  $\rightarrow$  better not screw it up

Non-Conservative dilutions – increase 6D  $\boldsymbol{\epsilon}$ 

- Incoherent synchrotron radiation
- Scattering (beam gas or intra-beam)

Conservative diultions – increase projected  $\varepsilon$ 

- Nonlinearities wrap phase space around
- Transverse wakefields couple x,y to z position
- Dispersion/chromaticity couple x,y to  $\delta$  energy offset

#### Wakefields

Beam is traveling near speed of light but beam will excite fundamental and higher-order modes along the metallic vacuum chamber boundary



First bunch losses energy (longitudinal and transverse) and fields impact subsequent bunches

Wakes are a strong function of the aperture with W  $_{\parallel}$  ~ 1/a² and W  $_{\perp}$ ~1/a³

#### Wakefields – Modal Representation

Beam is traveling near speed of light but beam will excite fundemental and higher-order modes in the cavity

$$W_z \simeq \sum_n 2k_{0n}(a) \cos \frac{\omega_{0n}s}{c}$$
  $s > 0$  Monopole modes



#### s > 0. Dipole modes

A leading particle leaves a field that impacts trailing particles

SLAC

Suggestion: look up the Panofsky-Wenzel Theorem

### **Longitudual Wakefield Compensation**

The longitudinal wakefield will generate an energy spread across the bunch distorting the rf acceleration field

Choose the rf phase to compensate (or accentuate the effect of the wakefield)

Nonlinearity of wakefield is more difficult to fix



#### **Transverse Wakefields**

Example of transverse wakefields observed in the SLAC linac  $\rightarrow$  single bunch beam breakup



There is no 6D emittance dilution but a strong nonlinear coupling between x and z that increases the projected emittance

#### **Dispersive Emittance Dilution**

Deflections from magnetic fields are energy dependent. Dipole (steering) magnets are used to steer trajectory down linac and compensate for magnetic field and placement errors

 $\rightarrow$  energy dependent trajectory as if residual dispersion

 $\Delta \varepsilon \sim \delta^2 \eta^2$ 





#### **Chromatic Dilution – Energy vs Focusing**

We use Twiss parameters to describe both beam parameters and the beam optics (Twiss parameters depend on initial conditions)

- Usually matched to the accelerator so OK but can be confusing!



Fig. 48. Beam and machine ellipses for an unmatched beam.

Fig. 48. Beam and machine ellipses for an unmatched beam.

SSSEPB, August 2015



Most processes will not dilute 6D phase space but there are many ways to couple the beam an increase projected emittance

Large energy spreads (few %) will lead to chromatic dilution and will drive tight tolerances to eliminate dispersive dilution

Longitudinal wakefields will add nonlinearity to longitudinal phase space making it hard to compress the beam to desired peak current (more later)

Transverse wakefields will couple x-z increasing projected emittance – depend on bunch length and apertures

#### **Bunch Compression**

Why compress bunch?

- 1. Peak current
- 2. Reduce energy spread from rf
- 3. Reduce transverse wakefields

How to compress the bunch?

Velocity bunch Path length variation

What is the velocity variation of relativistic particles  $\Delta\beta/\beta$ ?

 $\Delta\beta/\beta = \Delta\gamma/\gamma \ 1 \ / \ 2\gamma^2$ 

SSSEPB, August 2015

SI AC

#### Longitudinal Motion (γ >> 1) Bunch Rotation



SSSEPB, August 2015

#### **Magnetic Chicane – Path Length**

 $\theta_0$ 

 $\leftarrow \Lambda L \rightarrow$ 

A 4-bend magnetic chicane introduces a path length increase depending on bend angle,  $\theta$ , where  $|\theta| \ll 1$  and  $\gamma \gg 1$ .





2) Drift between ■ bends

 $\Delta s_2 \approx \frac{1}{2} \int_0^{\Delta L} \theta_0^2 dz = \frac{1}{2} \theta_0^2 \Delta L$ 

 $\Delta s = 4\Delta s_1 + 2\Delta s_2 = \theta_0^2 \left(\Delta L + \frac{2}{3}L_B\right)$ 

+ 2 drifts

SSSEPB, August 2015

3) 4 bends

Paul Emma

#### **Magnetic Chicane – Path Length Variation**

Now allow a small relative energy deviation,  $\delta = \Delta E/E_0$ 

$$\Delta s = \theta_0^2 \left( \Delta L + \frac{2}{3} L_B \right) \to \left( \frac{\theta_0}{1+\delta} \right)^2 \left( \Delta L + \frac{2}{3} L_B \right)$$

$$\approx \theta_0^2 \left( \Delta L + \frac{2}{3} L_B \right) \left( 1 - 2\delta + 3\delta^2 - \ldots \right)$$

$$= \Delta s_0 + R_{56}\delta + T_{566}\delta^2 + \dots$$

$$R_{56} \approx -2\theta_0^2 \left(\Delta L + \frac{2}{3}L_B\right)$$
 linear energy term

$$T_{566} \approx -\frac{3}{2}R_{56}$$

2<sup>nd</sup>-order energy term (chicane only)

#### **Types of Path Length Compressors**



SSSEPB, August 2015

#### **Linear Bunch Compressor**



### Impact of Nonlinearities (Rf and Optical)

Write bunch length coordinate after compressor to 2<sup>nd</sup> order ...

$$z = z_i + R_{56}\delta + T_{566}\delta^2$$

Now add 2<sup>nd</sup> order term of sinusoidal rf accelerating voltage...

$$\delta = a\delta_i + hz_i + \frac{\pi h}{\lambda \tan \phi} z_i^2$$

Using a Gaussian z-distribution  $[\langle z_i^4 \rangle = 3\sigma_{z_i}^4]$  and  $\langle z_i \delta_i \rangle = 0$ , the rms bunch length is...

$$\sigma_z^2 = a^2 R_{56}^2 \sigma_{\delta_i}^2 + (1 + hR_{56})^2 \sigma_{z_i}^2 + 2h^2 R_{56}^2 \left(h\frac{T_{566}}{R_{56}} - \frac{\pi}{\lambda \tan \phi}\right)^2 \sigma_{z_i}^4$$
  
limit linear term 2nd-order limit

SSSEPB, August 2015

#### **Nonlinear Effects**



22

#### **2nd-order Compensation**



2nd-order term from T566 and rf curvature. How to compensate this?

- 1. Choose arc-style compressor to flip sign of R56
- 2. Add rf with opposite curvature



## **LCLS-II Bunch Compressor Configuration**

Two stages of bunch compression to limit compression factor and peak current at low energy and reduce sensitivity to phase jitter



Energy chirp manipulation is performed primarily with rf phases (wakes are weak) but final chirp on short bunch is removed using resistive wall wake

### **Evolution of the LCLS-II Bunch Along the Linac**



## Tracking a 100, 300, and 20 pC Bunch Charge

(with CSR, long. wakes, and separate injector runs – ASTRA & Elegant)



Q = 100 pC  $\gamma \varepsilon_x = 0.35 \rightarrow 0.42 \text{ }\mu\text{m} (20\%)$ heater = 5.5 keV rms  $\varphi_{L1} = -12.7 \text{ deg}$   $V_{3.9} = 64.7 \text{ MV}$   $\varphi_{3.9} = -150 \text{ deg}$  $R_{56-BC2} = -37.0 \text{ mm}$ 

SLAC

#### Q = 300 pC

 $\gamma \varepsilon_x = 0.61 \rightarrow 0.77 \ \mu m \ (26\%)$ heater = 11 keV rms  $\varphi_{L1} = -14.0 \ deg$  $V_{3.9} = 58.0 \ MV$  $\varphi_{3.9} = -150 \ deg$  $R_{56-BC2} = -36.7 \ mm$ 

Q = 20 pCγε<sub>x</sub>=0.09→<u>0.13</u> μm (44%) heater = 2.0 keV rms  $φ_{L1} = -21.0 \text{ deg}$   $V_{3.9} = 55 \text{ MV}$   $φ_{3.9} = -165 \text{ deg}$  $R_{56-BC2} = -62 \text{ mm}$ 

#### **Take-Away**

Want to manipulate the bunch length along the linac but relativistic bunch is 'frozen'  $\rightarrow$  vary energy dependent path length and 'chirp' the beam by adding position dependent energy variation with RF and wakefields

Two styles of compressors, one where high energy particles have shorter path and one with a longer path (think earth orbit)

Nonlinearities of longitudinal phase space limit compression. Can try to compensate these optically, using wakefields (wrong sign for chicanes), or harmonic rf

Multi-stage compression is used to reduce sensitivity of an single stage and reduce peak currents at low energy

#### **Coherent Synchrotron Radiation**

Bunch radiates coherently at wavelengths longer than the density modulation



SLAC

SSSEPB, August 2015

#### **ISR & CSR In Dipoles**

 ISR: Radiation from a beam of e<sup>-</sup> radiating independently while undergoing uniform circular motion: Weak.



CSR: Radiation from a beam of e<sup>-</sup>
radiating in phase with each other while
undergoing uniform circular motion:
Strong.

Becomes an issue after bunch compression where:

- $\lambda \gtrsim \sigma_z$
- Radiation from tail catches up to head; energy spread:



#### **LCLS II Beamline: Area of Interest**

• Specific areas of interest: anywhere there is a dipole/bend & where







### **Density Variations** → **Microbunching**

CSR will also radiate due to density variation along the bunch

→ Leads to energy variation along with density perturbation



### **Microbunching Gain**

Gain due to upstream impedances (LSC, linac wake)

$$G \equiv \left| \frac{b_f}{b_0} \right| \\ = \frac{I_0}{\gamma I_A} |k_f R_{56} \int_0^L ds Z(k_0; s)| \exp\left(-\frac{1}{2} k_f^2 R_{56}^2 \sigma_{\delta}^2\right)$$

No emittance damping!





 All beams have finite incoherent (uncorrelated) energy spread, smearing of microbunching occurs if

$$R_{56} \left(\frac{\Delta E}{E}\right)_{inc} \sim \lambda/(2\pi)$$

SSSEPB, August 2015

### **Longitudinal Space Charge Force**

The longitudinal space charge force is suppressed as  $1/\gamma^2$  for wavelengths long compared to the bunch radius in the beam rest frame

BUT

At wavelengths comparable to the radius, the cancellation is incomplete

 $\rightarrow$  LSC is the largest impedance source in the long drifts of the LCLS-II

## **Suppression of Microbunching**

#### Increase beam energy spread



- Laser-electron interaction in an undulator induces rapid energy modulation (at 800 nm), to be used as effective energy spread before BC1 (3 keV $\rightarrow$  40 keV rms)
- •Inside a weak chicane for easy laser access, timecoordinate smearing (Emittance growth is negligible)

Huang et al., PRST-AB 7, 2004

#### **Microbunch Effects in LCLS**



#### LCLS microbunching studies: 4GeV, 180pC, 1kA

## s2u simulations: 100 pC, LCLS-II HXR

