

Introduction to the Physics of Free-Electron Lasers

Outline

SLAC

FEL Theory:

1-D FEL Equations

FEL Instability

Universal Scaling

SASE vs Seeded

Non-ideal effects

The X-Ray Free-Electron Laser SLAC

For Angstrom level radiation: High energy linac (~5-15 GeV) + Long Undulator (120 m)

X-FEL shares properties of conventional lasers:

-High Power (~ 10-100 GW)
-Short Pulse (~4-100 fs)
-Narrow Bandwidth (~0.1% to 0.005%)
-Transverse Coherence

ARTICLES PUBLISHED ONLINE: 1 AUGUST 2010 | DOI: 10.1038/NPHOTON.2010.176

First lasing and operation of an ångstrom-wavelength free-electron laser

P. Emma¹*, R. Akre¹, J. Arthur¹, R. Bionta², C. Bostedt¹, J. Bozek¹, A. Brachmann¹, P. Bucksbaum¹, R. Coffee¹, F.-J. Decker¹, Y. Ding¹, D. Dowell¹, S. Edstrom¹, A. Fisher¹, J. Frisch¹, S. Gilevich¹,

J. Hastings¹, G. Hays¹, Ph. Hering¹, Z. Huang¹, R. Iverson¹, H. Loos¹, M. Messerschmidt¹,

A. Miahnahri¹, S. Moeller¹, H.-D. Nuhn¹, G. Pile³, D. Ratner¹, J. Rzepiela¹, D. Schultz¹, T. Smith¹,

P. Stefan¹, H. Tompkins¹, J. Turner¹, J. Welch¹, W. White¹, J. Wu¹, G. Yocky¹ and J. Galayda¹

10 Billion times brighter than Synchrotron Radiation Sources!!!!

Undulator

Periodic array of dipole magnets with alternating polarity

$$B_{y} = B_{0} \sin(k_{w}z)$$
$$k_{w} = 2\pi / \lambda_{w}$$

Electron Motion in Undulator SLAC

$$\vec{P} = mc\vec{\beta}\gamma + e\vec{A} = const$$

$$\vec{A} = \hat{x} \frac{B_0}{ek_w mc} \cos(k_w z) = -\hat{x}K\cos(k_w z) \qquad K = \left|\frac{B_0}{ek_w mc}\right|$$

$$\vec{\beta} = \hat{x} \frac{K}{\gamma} \cos(k_w z)$$

Helical Undulator

$$B_{x} = -B_{0}\sin(k_{U}z)$$
$$B_{y} = B_{0}\cos(k_{U}z)$$

 $\beta_x(z) = -(K / \gamma) \sin(k_U z)$ $\beta_y(z) = (K / \gamma) \cos(k_U z)$

SLAC

Trajectory is a helix

Note: light slips ahead by 1 wavelength per oscillation period

Undulator Radiation SLAC

 $\lambda_r = \frac{\lambda_w}{\beta_z} - \lambda_w$

Distance between two consecutive wavefronts = wavelength

Note: light slips ahead by 1 wavelength per oscillation period

$$\frac{1}{\gamma^2} = 1 - \beta_z^2 - \vec{\beta}_\perp^2$$

$$\frac{\nu_z}{c} = \sqrt{1 - \frac{1}{\gamma^2} - \vec{\beta}_{\perp}^2}$$

 $\lambda_r = C \frac{\lambda_w}{\nu_z} - \lambda_w$

Each electron emits a wave train with N_U cycles In the forward direction Polarization: linear for linear undulator circular for helical undulator

1 particle -> 1 wavetrain

Electrons randomly distributed: power \propto number of particles **in a wavetrain**

$$< \left(\sum_{n} E_0 \sin(\omega t + \theta_n)\right)^2 > = <\sum_{n} \left(E_0 \sin(\omega t + \theta_n)\right)^2 > + <\sum_{n,m} E_0^2 \sin(\omega t + \theta_n) \sin(\omega t + \theta_m) > = \frac{NE_0^2}{2}$$

Coherence Length = $N_u \lambda$ (length of a wavetrain)

Particles are bunched at multiples of the wavelength

power ∞ square of number of particles **in a wavetrain**

$$< \left(\sum_{n} E_0 \sin(\omega t + \theta_0)\right)^2 >= \frac{N^2 E_0^2}{2}$$

For typical x-ray FELs $N \sim 10^7$ Huge gain going from incoherent to coherent emission!

FEL: Working Principle SLAC

Resonant Interaction SLAC

Courtesy of D. Ratner

The Resonance Condition SLAC

Courtesy of D. Ratner

Process goes unstable, leading to exponential growth of power and bunching

COLLECTIVE INSTABILITIES AND HIGH-GAIN REGIME IN A FREE ELECTRON LASER

R. BONIFACIO *, C. PELLEGRINI

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA

and

L.M. NARDUCCI Physics Department, Drexel University, Philadelphia, PA 19104, USA Can start from a coherent seed or by noise in electron distribution!

FEL Equations

FEL Equations

Energy Modulation Density Modulation

Resonant Interaction

Coherent Radiation

 $\frac{d}{dz}b = -2ik_w\tilde{\eta}$

FEL Equations

Wave Equation

SLAC

$$(\nabla^2 - \frac{\partial^2}{c^2 \partial t^2})\vec{A_p} = -\mu_0 \vec{J},$$

$$\vec{E} = -\frac{\partial}{\partial t}\vec{A}_p$$

Good-old inhomogeneous wave equation in Lorenz Gauge

 $-\frac{\partial^2}{c^2\partial t^2})\vec{A_p} = -\mu_0\vec{J},$

2nd Approximation: SVEA SLAC

SVEA: Slowly Varying Envelope Approximation Used for narrow bandwidth signals

$$ec{A_p} = rac{\hat{x} + i\hat{y}}{2} ilde{A_p}(z,t) \exp\left(ik_r(z-ct)
ight) + c.c.$$

Carrier wave
 $k_r = k_w rac{2\gamma^2}{1+K^2}$

2nd Approximation: SVEA SLAC

SVEA: Slowly Varying Envelope Approximation Used for narrow bandwidth signals

$$\begin{split} \vec{A_p} &= \frac{\hat{x} + i\hat{y}}{2} \tilde{A}_p(z,t) \exp\left(ik_r(z-ct)\right) + c.c. \\ & \swarrow \\ & \swarrow \\ & \text{Slowly varying envelope} \\ & \frac{\partial}{\partial t} \tilde{A}_p(z,t) \ll ck_r \tilde{A}_p(z,t) \\ & \frac{\partial}{\partial z} \tilde{A}_p(z,t) \ll k_r \tilde{A}_p(z,t) \end{split}$$

SVEA

$$\frac{\partial^2}{\partial t^2} A_p(z,t) = \left(\frac{\partial^2}{\partial t^2} \tilde{A}_p(z,t) - 2ick_r \frac{\partial}{\partial t} \tilde{A}_p(z,t) - c^2 k_r^2 \tilde{A}_p(z,t)\right) \exp\left(ik_r(z-ct)\right)$$

$$\frac{\partial^2}{\partial z^2} A_p(z,t) = \left(\frac{\partial^2}{\partial z^2} \tilde{A}_p(z,t) + 2ik_r \frac{\partial}{\partial z} \tilde{A}_p(z,t) - k_r^2 \tilde{A}_p(z,t)\right) \exp\left(ik_r(z-ct)\right)$$

SVEA

-SLAC

$$\begin{split} \frac{\partial}{\partial t}\tilde{A}_{p}(z,t) \ll ck_{r}\tilde{A}_{p}(z,t) \\ << \\ \frac{\partial^{2}}{\partial t^{2}}A_{p}(z,t) = \left(\frac{\partial^{2}}{\partial t^{2}}\int_{\mathbf{A}}(z,t) - 2ick_{r}\frac{\partial}{\partial t}\tilde{A}_{p}(z,t) - c^{2}k_{r}^{2}\tilde{A}_{p}(z,t)\right) \exp\left(ik_{r}(z-ct)\right) \\ << \\ \frac{\partial^{2}}{\partial z^{2}}A_{p}(z,t) = \left(\frac{\partial^{2}}{\partial z^{2}}\int_{\mathbf{A}}(z,t) + 2ik_{r}\frac{\partial}{\partial z}\tilde{A}_{p}(z,t) - k_{r}^{2}\tilde{A}_{p}(z,t)\right) \exp\left(ik_{r}(z-ct)\right) \\ \\ \frac{\partial}{\partial z}\tilde{A}_{p}(z,t) \ll k_{r}\tilde{A}_{p}(z,t) \end{split}$$

SVEA

-SLAC

$$(\nabla^2 - \frac{\partial^2}{c^2 \partial t^2})\vec{A_p} = -\mu_0 \vec{J},$$

$$\frac{\partial^2}{\partial t^2} A_p(z,t) = \begin{pmatrix} -2ick_r \frac{\partial}{\partial t} \tilde{A}_p(z,t) - c^2k_r^2 \tilde{A}_p(z,t) \end{pmatrix} \exp\left(ik_r(z-ct)\right)$$

$$Cancel out in wave equation$$

$$\frac{\partial^2}{\partial z^2} A_p(z,t) = \begin{pmatrix} -2ick_r \frac{\partial}{\partial t} \tilde{A}_p(z,t) - c^2k_r^2 \tilde{A}_p(z,t) \end{pmatrix} \exp\left(ik_r(z-ct)\right)$$
SVEA

-SLAC

$$(\nabla^2 - \frac{\partial^2}{c^2 \partial t^2})\vec{A_p} = -\mu_0 \vec{J},$$

$$\frac{\partial^2}{\partial t^2} A_p(z,t) = \begin{pmatrix} -2ick_r \frac{\partial}{\partial t} \tilde{A}_p(z,t) \end{pmatrix} \exp\left(ik_r(z-ct)\right)$$

$$\frac{\partial^2}{\partial z^2} A_p(z,t) = \left(+ 2ik_r \frac{\partial}{\partial z} \tilde{A}_p(z,t) \right) \exp\left(ik_r(z-ct)\right)$$

SLAC

$$\vec{E} = -\frac{\partial}{\partial t}\vec{A}_p \simeq ik_r c \frac{\hat{x} + i\hat{y}}{2}\tilde{A}_p(z,t) \exp\left(ik_r(z-ct)\right)$$

The Current Density SLAC

 $\vec{j}_{\perp} = ec\vec{\beta}_{\perp}\delta(\vec{x}-\vec{x}_n)$

For each electron

$$\vec{J} = \sum_{n=1}^{N} ec \frac{K}{\gamma_n} \exp(-ik_w z) \frac{\hat{x} + i\hat{y}}{2} \delta_f(z - z_n) \delta_f(\vec{x}_\perp - \vec{x}_{\perp,n}) + c.c.$$

SLAC

SLAC

$$\left(\frac{\partial}{\partial z} + \frac{\partial}{c\partial t}\right)\tilde{E}(z,t) = -\sum_{n=1}^{N} \frac{eK}{2\epsilon_{0}\gamma_{n}} \exp(-i\theta)\delta_{f}(z-z_{n})\delta_{f}(\vec{x}_{\perp} - \vec{x}_{\perp,n})$$
$$\theta = (k_{r} + k_{w})z - k_{r}ct$$

SLAC

$$\begin{split} \left(\frac{\partial}{\partial z} + \frac{\partial}{c\partial t}\right) \tilde{E}(z,t) &= -\sum_{n=1}^{N} \frac{eK}{2\epsilon_0 \gamma_n} \exp(-i\theta) \delta_f(z-z_n) \delta_f(\vec{x}_{\perp} - \vec{x}_{\perp,n}) \\ \theta &= \left(k_r + k_w\right) z - k_r ct \\ \vec{J} &= \sum_{n=1}^{N} ec \frac{K}{\gamma_n} \exp(-ik_w z) \frac{\hat{x} + i\hat{y}}{2} \delta_f(z-z_n) \delta_f(\vec{x}_{\perp} - \vec{x}_{\perp,n}) + c.c. \\ 2ik_r \left[\left(\frac{\partial}{\partial z} + \frac{\partial}{c\partial t}\right) \tilde{A}_p(z,t) \right] \frac{\hat{x} + i\hat{y}}{2} \exp(ik_r(z-ct)) + c.c. = -\mu_0 \vec{J}. \end{split}$$

The Ponderomotive Phase SLAC

$$\theta = (k_r + k_w)z - k_r ct$$

$$\lambda_r = C \frac{\lambda_w}{v_z} - \lambda_w$$

Combine the two definitions:

$$\theta = k_r (z - v_z t)$$

Theta is a measure of the position along the electron beam

Wave Equation: Change of Variables

$$\frac{\partial}{\partial z} \to \frac{\partial}{\partial z} + (k_r + k_w) \frac{\partial}{\partial \theta}$$
$$\frac{\partial}{\partial t} \to -k_r \frac{\partial}{\partial \theta}$$

$$\left(\frac{\partial}{\partial z} + k_w \frac{\partial}{\partial \theta}\right) \tilde{E}(z,\theta) = -\sum_{n=1}^N \frac{eK}{2\epsilon_0 \gamma_n} \exp(-i\theta) \delta_f(z-z_n) \delta_f(\vec{x}_\perp - \vec{x}_\perp)$$

Wave Equation: Frequency Domaine

$$\begin{pmatrix} \frac{\partial}{\partial z} + k_w \frac{\partial}{\partial \theta} \end{pmatrix} \tilde{E}(z,\theta) = -\sum_{n=1}^{N} \frac{eK}{2\epsilon_0 \gamma_n} \exp(-i\theta) \delta_f(z-z_n) \delta_f(\vec{x}_{\perp} - \vec{x}_{\perp})$$

$$\tilde{E}(z,\theta) = \bar{E}(z,\Delta) \exp(i\Delta\theta) \qquad k_w \frac{\partial}{\partial \theta} \longrightarrow k_w i\Delta$$
Take a volume average
$$\Delta = \frac{k-k_r}{2\epsilon_0 \gamma_n}$$

$$\int \frac{\Delta}{k_r} = -\frac{eKn_0}{2\epsilon_0} \frac{1}{N} \sum_{n=1}^{N} \frac{\exp\left(-i\theta_n(1+\Delta)\right)}{\gamma_n}$$

Take a volume average

Wave Equation: Frequency Domaine

$$\left(\frac{\partial}{\partial z} + k_w \frac{\partial}{\partial \theta} \right) \tilde{E}(z,\theta) = -\sum_{n=1}^{N} \frac{eK}{2\epsilon_0 \gamma_n} \exp(-i\theta) \delta_f(z-z_n) \delta_f(\vec{x}_\perp - \vec{x}_\perp)$$
$$\tilde{E}(z,\theta) = \bar{E}(z,\Delta) \exp(i\Delta\theta) \quad k_w \frac{\partial}{\partial \theta} \longrightarrow k_w i\Delta$$

Wave Equation and the Bunching SLAC Factor $\left(\frac{\partial}{\partial z} + k_w i\Delta\right) \bar{E} = -\frac{eKn_0}{2\epsilon_0} \frac{1}{N} \sum_{n=1}^N \frac{\exp\left(-i\theta_n(1+\Delta)\right)}{\gamma_n}$ $\gamma_n \approx \gamma_h$ Quasi monoenergetic beam $\left(\frac{d}{dz} + ik_w\Delta\right)\bar{E} = -\frac{eKn_0}{2\gamma_h\epsilon_0} b$

$$b = \frac{1}{N} \sum_{n=1}^{N} \exp\left(-i\theta_n(1+\Delta)\right)$$

 $b = \frac{1}{N} \sum_{i=1}^{N} \exp\left(-i\theta_n(1+\Delta)\right)$

Need an equation for this!

How Does b evolve?

Just substitute β_z

Use definition of resonant frequency

Quasi monochromatic beam

Bunching Equation

-SLAC

Energy Modulation!

Bunching Equation

SLAC

 $\frac{db}{dz} \approx 2ik_{w} \frac{1}{N} \sum \eta_{n} e^{-i(1+\Delta)\theta_{n}}$

Energy Modulation!

 $\frac{db}{dz} \approx -2ik_{w}\tilde{\eta}$

From Bunching to Energy Modulations

$$\frac{db}{dz} \approx -2ik_{w}\tilde{\eta}$$

$$mc^2 \frac{d}{dz} \gamma_n = e\vec{\beta} \cdot \vec{E}(z,t)$$

 $\frac{d}{dz}\eta_n = \frac{eK\bar{E}}{2mc^2\gamma_b\gamma_n}\exp\left(i\theta_n(1+\Delta)\right) + c.c.$

$$\frac{d\tilde{\eta}}{dz} = \frac{d}{dz}\frac{1}{N}\sum \eta_n e^{-i(1+\Delta)\theta_n} = \frac{1}{N}\sum \left(\frac{d\eta_n}{dz}\right)e^{-i(1+\Delta)\theta_n} + -\frac{i(1+\Delta)}{N}\sum \eta_n\frac{d\theta_n}{dz}e^{-i(1+\Delta)\theta_n}$$

 $\frac{d}{dz}\eta_n = \frac{eK\bar{E}}{2mc^2\gamma_b\gamma_n}\exp\left(i\theta_n(1+\Delta)\right) + c.c.$

 $\frac{d\tilde{\eta}}{dz} = \frac{d}{dz} \frac{1}{N} \sum \eta_n e^{-i(1+\Delta)\theta_n} = \frac{1}{N} \sum \left(\frac{d\eta_n}{dz}\right) e^{-i(1+\Delta)\theta_n} + -\frac{i(1+\Delta)}{N} \sum \eta_n \frac{d\theta_n}{dz} e^{-i(1+\Delta)\theta_n}$

CAREFUL: 2ND ORDER TERM! NEEDS A WHOLE NEW HIERARCHY OF EQUATIONS TO CLOSE THE SYSTEM!

$$\frac{d}{dz}\eta_n = \frac{eKE}{2mc^2\gamma_b\gamma_n}\exp\left(i\theta_n(1+\Delta)\right) + c.c.$$
$$\frac{d\tilde{\eta}}{dz} = \frac{d}{dz}\frac{1}{N}\sum\eta_n e^{-i(1+\Delta)\theta_n} = \frac{1}{N}\sum\left(\frac{d\eta_n}{dz}\right)e^{-i(1+\Delta)\theta_n} + -\frac{i(1+\Delta)}{N}\sum\eta_n\frac{d\theta_n}{dz}e^{-i(1+\Delta)\theta_n}$$

HERE WE MAKE THE LINEAR APPROXIMATION!

b, E and $\, \tilde{\eta} \,$ are small perturbations. Neglect all higher order terms

 $\frac{d}{dz}\eta_n = \frac{eK\bar{E}}{2mc^2\gamma_b\gamma_n}\exp\left(i\theta_n(1+\Delta)\right) + c.c.$

$$\frac{d\tilde{\eta}}{dz} = \frac{d}{dz} \frac{1}{N} \sum \eta_n e^{-i(1+\Delta)\theta_n} = \frac{1}{N} \sum \left(\frac{d\eta_n}{dz}\right) e^{-i(1+\Delta)\theta_n}$$

Linear approximation allows us to close the system!!

$$\frac{d}{dz}\tilde{\eta} \simeq \frac{eK\bar{E}}{2mc^2\gamma_b^2}$$

Linear FEL Equations! SLAC

 $\left(\frac{d}{dz} + ik_w\Delta\right)\bar{E} = -\frac{eKn_0}{2\gamma_b\epsilon_0}(b)$ $\frac{d}{dz}b = -2ik_w\tilde{\eta},$ $\frac{d}{dz}\tilde{\eta} = \frac{eK\bar{E}}{2mc^2\gamma_b^2}.$

15 MINUTE BREAK! SLAC

Assumptions

- Neglect diffraction
- Small signal (b << 1)
- Slowly varying envelope (i.e. narrow bandwidth signal)
- No velocity spread (longitudinal and transverse)

Equilibrium Condition

If particles are uniformly distributed: b = 0 Initial field = 0 Beam perfectly monoenergetic: $\tilde{\eta} = 0$

$$\left(\frac{d}{dz} + ik_{w}\Delta\right)\overline{E} = 0$$

$$\frac{d}{dz}b = 0$$

$$\frac{d}{dz}\tilde{\eta} = 0$$

System at equilibrium

FEL Instability

Is the equilibrium stable or unstable?

 $\Delta = 0$ $\bar{E}, b, \tilde{\eta} \propto \exp(-2ik_w \alpha z)$ $\downarrow^{\alpha^3} = \rho^3$

 $\rho = (Kk_p/4k_w)^{(2/3)}$

 $k_p^2 = n_0 e^2 / \epsilon_0 \gamma_b^3 m c^2$

The ρ parameter

 $\rho = (Kk_p/4k_w)^{(2/3)}$

 $\propto n_e^{1/3}$

 $\propto 1/\gamma$

High density -> higher gain! (note: scaling typical of all 3-wave instabilities...)

Smaller growth rate at higher energies

 $\propto K^{2/3}$

Stronger magnetic field -> higher gain

Typically 10⁻³ to 10⁻⁴ for x-ray parameters

The gain-length

What theorists call gain-length:

$$l_{\rm g} = \frac{1}{2k_{\rm w}\rho}$$

Because it makes equations look pretty...

What experimentalists call gain-length:

$$L_{\rm g} = \frac{1}{2\sqrt{3}k_{\rm w}\rho}$$

Because power is what you measure...

$$P \propto \exp\left(\frac{z}{L_g}\right)$$

That's Pretty Much it... SLAC

First lasing and operation of an ångstrom-wavelength free-electron laser

P. Emma^{1*}, R. Akre¹, J. Arthur¹, R. Bionta², C. Bostedt¹, J. Bozek¹, A. Brachmann¹, P. Bucksbaum¹,
R. Coffee¹, F.-J. Decker¹, Y. Ding¹, D. Dowell¹, S. Edstrom¹, A. Fisher¹, J. Frisch¹, S. Gilevich¹,
J. Hastings¹, G. Hays¹, Ph. Hering¹, Z. Huang¹, R. Iverson¹, H. Loos¹, M. Messerschmidt¹,
A. Miahnahri¹, S. Moeller¹, H.-D. Nuhn¹, G. Pile³, D. Ratner¹, J. Rzepiela¹, D. Schultz¹, T. Smith¹,
P. Stefan¹, H. Tompkins¹, J. Turner¹, J. Welch¹, W. White¹, J. Wu¹, G. Yocky¹ and J. Galayda¹

What Happens at Saturation? SLAC

 $\frac{d}{dz}b = -2ik_w\tilde{\eta}$

$|\tilde{\eta}| = \rho |b|$

@ saturation b ~ 1 \rightarrow $| \tilde{\eta}_{sat} | \sim ho$

What Happens at Saturation? SLAC

$$P_{rad} = Z_0 |\bar{E}|^2 = \rho P_b |b|^2$$

@ saturation b ~ 1 $P_b = n_0 \gamma mc^3$
 \downarrow Electron beam power density
 $P_{sat} \sim \rho P_b$

For LCLS that's ~10-100 GW

Wait a Minute...

SLAC

 $P_{sat} \approx \rho P_b \propto I^{4/3}$

But I promised you that coherent radiation goes like square of # of particles...

Wait a Minute...

 $P_{sat} \approx \rho P_b \propto I^{4/3}$

But I promised you that coherent radiation goes like square of # of particles...

What matters is # of particles in a slippage length!

$$N_{SLIPPAGE}^{2} = \left(\frac{I}{e}\frac{\lambda_{r}L_{sat}}{\lambda_{w}}\right)^{2}$$

$$L_{sat} \propto \frac{1}{\rho} \propto I^{-1/3}$$

 $N_{SLIPPAGE}^2 \propto I^{4/3}$
Normalized FEL Equations SLAC Normalize everything to saturation value $\frac{d}{d\bar{z}}a + i\frac{\Delta}{2\rho}a = -b$ $a = \bar{E} \sqrt{\frac{Z_0}{P_b}}$ dip $\bar{z} = 2k_w \rho z$

Normalized FEL Equations SLAC

Natural scaling of detuning is also ~ ρ

Normalize everything to saturation value

 $a = \bar{E}_1$

 $\delta = \Delta/2\rho$

Dispersion Relation for General Detuning

$$\lambda^3 - \delta\lambda^2 - 1 = 0$$

Assume all quantities

$$\propto \exp(i\lambda\overline{z})$$

Substitute into FEL linear equations

$$\lambda_1 = -\frac{1}{2} + \frac{\delta}{3} - \frac{\delta^2}{18} + i\frac{\sqrt{3}}{2}\left(1 - \frac{\delta^2}{9}\right)$$

 $\sigma_{\omega}/\omega = 6\rho/\sqrt{(2\sqrt{3}\bar{z})}$

Bandwidth ~ z $\frac{1}{2}$ @ saturation (z ~ 10 to 20) $\Delta\omega/\omega \sim \rho$

$$To 2^{nd} Order... \qquad \text{SLAC}$$
$$\lambda_1 = -\frac{1}{2} + \frac{\delta}{3} + \frac{\delta^2}{18} + i\frac{\sqrt{3}}{2}\left(1 - \frac{\delta^2}{9}\right)$$

Group Velocity = $v_b + 1/3$ slippage rate

Initial Value Problem SLAG

$$a = \sum_{j=1}^{3} \frac{-i}{\frac{d}{d\lambda}D|_{\lambda=\lambda_j}} \exp(-i\lambda\bar{z})(i\lambda_j^2 a_0 + \lambda_j b_0 + p_0)$$

Initial values of three variables

$$D(\lambda,\delta) = \lambda^3 - \delta\lambda^2 - 1$$

FEL can be triggered by either

- an initial radiation field
- an initial microbunching
- an initial energy modulation

Experimentally, at x-rays it's difficult to generate a starting value for any of these quantities

Seeded Free-Electron Laser SLAC

An initial narrow bandwidth laser is used to initiate the process -> Narrow-bandwidth coherent pulse amplified to saturation

Shot-Noise

Seeding can't be done at x-rays: NO LASERS!

NOISE Luckily nature gives us a natural initial value for beam microbunching: $< b_{sn} >= 0$ Figure from: Avraham Gover et al. Nature Physics 8, 877-880 (2012) $<|b_{sn}|^{2}>=\frac{1}{N^{2}}\sum \exp(-i\theta_{n})\sum \exp(i\theta_{m})$ $=\frac{1}{N^2}\sum \exp\left(-i(\theta_n-\theta_m)\right)+\frac{1}{N^2}\sum \exp\left(-i(\theta_n-\theta_m)\right)$

N

Shot-Noise Microbunching In Frequency Domain

Increasing bunch length: Narrower spikes

Shot-Noise Microbunching (k-k') $< b(k)b^*(k') > =$

> Spectral autocorrelation ~ Fourier transform of longitudinal distribution at k-k'

(Nice derivation in Saldin's book!)

 Δ Photon Energy

Using Highly Resolved Single-Shot Spectra

Yuichi Inubushi,1,* Kensuke Tono,2 Tadashi Togashi,2 Takahiro Sato,1 Takaki Hatsui,1 Takashi Kameshima,2 Kazuaki Togawa,1 Toru Hara,1 Takashi Tanaka,1 Hitoshi Tanaka,1 Tetsuya Ishikawa,1 and Makina Yabashi

Self Amplified Spontaneous Emissionec

$$a(\bar{z},\delta) = G(\bar{z},\delta)b_0$$

From initial value problem

$$G(\bar{z},\delta) = \frac{-i}{3\lambda - 2\delta} \exp(-i\lambda\bar{z})$$

In SASE b₀ is shot-noise microbunching

$$< b_{sn} >= 0$$

$$<\left|b_{sn}\right|^{2}>=\frac{1}{N}$$

What Does SASE Look Like? SLAC

60

60

Spiky temporal structure.

Spikes get broader as radiation slips across the electron bunch!

The Cooperation Length SLAC

$$\bar{a}(\bar{z},\bar{z}_1) = \frac{k_r L_b \rho}{\pi} \int \exp(i\delta\bar{z}_1) b_0(\delta) G(\bar{z},\delta) d\delta$$

Note: rho defines the spectral width

 $\delta = \Delta/2\rho$

The Fourier conjuate variable is

$$\overline{z_1} = 2\rho\theta = 2k_r\rho(z - v_z t)$$

Which means that the length-scale of the SASE spikes is

 $l_c = 1/2k_r\rho$

"Cooperation length" = slippage in a gain-length

What is the Average Power? SLAC

$$\bar{a}(\bar{z},\bar{z}_1) = \frac{k_r L_b \rho}{\pi} \int \exp(i\delta\bar{z}_1) b_0(\delta) G(\bar{z},\delta) d\delta$$

We can use Parseval's theorem to compute average power

$$< |\bar{a}(\bar{z}, \bar{z}_1)|^2 > = \frac{k_r L_b \rho}{N\pi} \int |G(\bar{z}, \delta)|^2 d\delta$$

Equivalent Shot-Noise Power SLAC

Approximate solution by neglecting δ dependence of residue term:

Gain function turns into a Gaussian!

$$P_{SASE} = \frac{1}{9} P_{sn} \exp\left(2\rho k_w \sqrt{3}z\right)$$
$$P_{sn} = P_b \frac{6\rho^2}{N_\lambda} \sqrt{\frac{\pi}{\bar{z}\sqrt{3}}}$$

 N_{λ} number of particles in a wavelength

~few to tens of kW for typical x-ray FELs

Using Our 1-D Theory... SLAC

$$<\bar{a}(\bar{z}_1)\bar{a}^*(\bar{z}_1+\bar{z}_1')>=\left(\frac{k_rL_b\rho}{N\pi}\right)\int\exp(-i\delta\bar{z}_1')|G(\bar{z},\delta')|^2d\delta$$

Wiener's theorem:

Autocorrelation function = Fourier Transform of spectral power density

Using the same Gaussian approximation:

$$<\bar{a}(\bar{z},\bar{z}_1)\bar{a}^*(\bar{z},\bar{z}_1+\bar{z}_1')>=<|\bar{a}(\bar{z},\bar{z}_1)|^2>\exp\left(-\frac{\bar{z}_1'^2}{2\sigma_{\bar{z}_1,c}^2}\right)$$

$$\sigma_{\bar{z}_1,c} = \frac{\sqrt{2\sqrt{3}\bar{z}}}{3} \longleftarrow$$

Coherence length grows as a function of time! (Consistently with our intuition from previous slide...)

Coherence length SLAC

$$\sigma_{\bar{z}_1,c} = \frac{\sqrt{2\sqrt{3}\bar{z}}}{3}$$

Which means at saturation (10-20 gain-lengths)

RMS coherence length ~ 1 cooperation length

SASE Spikes: Experimental Observation

Characterization of a Chaotic Optical Field Using a High-Gain, Self-Amplified Free-Electron Laser

Yuelin Li,^{1,*} Samuel Krinsky,² John W. Lewellen,¹ Kwang-Je Kim,¹ Vadim Sajaev,¹ and Stephen V. Milton¹

SASE Spikes: Spectral Measurements

Bibliography

COLLECTIVE INSTABILITIES AND HIGH-GAIN REGIME IN A FREE ELECTRON LASER

R. BONIFACIO *, C. PELLEGRINI

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA

and

L.M. NARDUCCI Physics Department, Drexel University, Philadelphia, PA 19104, USA

Received 5 April 1984

VOLUME 73, NUMBER 1 PHYSICAL REVIEW LETTERS

4 JULY 1994

Spectrum, Temporal Structure, and Fluctuations in a High-Gain Free-Electron Laser Starting from Noise

R. Bonifacio,^{1,2} L. De Salvo,¹ P. Pierini,² N. Piovella,¹ and C. Pellegrini³

Non-Ideal Effects

Energy-spread:

Electron beams are not mono-energetic but have a small spread. How much spread can we tolerate?

$$\frac{d\theta}{dz} = 2k_w\eta$$

$$\sigma_{\theta} = 2k_{w}\sigma_{\eta}l_{g} = \frac{\sigma_{\eta}}{\rho} << 1$$

Rho is the energy acceptance of the FEL!

Dispersion Relation

SLAC

Whatever your distribution, you want Energy-Spread << ρ

Emittance

Electrons have finite transverse velocity spre

Spread in transverse velocity = Spread in longitudinal velocity!

BEAM ENVELOPE

 $\lambda_{\beta_x} = 2z \beta_x$

V22 0.

Wé

Phase-spread in a gain-length <<1

Long-story short: you need small emittance for FEL!!

Diffraction Losses

SLAC

The lengt-scale for radiation to diffract out of the beam is the Rayleigh length:

$$L_r = \frac{1}{2}k_r\sigma_x^2$$

Diffraction losses are negligible if

$$L_r >> l_g$$

If You Thought This Was Complicated...

SLAC

The full-blown 3-D theory can account for all these effects simultaneously...

$$\left(\mu - \bar{\nu} + \frac{\bar{\boldsymbol{\nabla}}_{\perp}^2}{2} \right) A(\bar{\boldsymbol{x}}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{\boldsymbol{x}}' A(\bar{\boldsymbol{x}}') \times \exp\left[-\frac{\bar{\boldsymbol{x}}^2 + (\bar{\boldsymbol{x}}')^2 - 2\bar{\boldsymbol{x}} \cdot \bar{\boldsymbol{x}}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2} \right) \right] = 0.$$

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function

of 4 dimensionless parameters

$$\left(\mu - \bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2} \right) A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}')$$
$$\times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(\frac{i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}}{2\bar{\sigma}_x^2} \right) \right] = 0.$$

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{pmatrix} \mu & \overline{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2} \end{pmatrix} A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}') \\ \int \times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2} \right) \right] = 0.$$

$$\bar{\mathcal{V}}$$

Detuning / ρ

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{split} \left(\mu - \bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2}\right) & A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}') \\ & \times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}\right)\right] = 0. \\ \bar{\sigma}_x &= \sigma_x \sqrt{2k_1 k_u \rho} = \frac{2}{\sqrt{3}} \frac{L_R}{L_{G0}} \qquad \begin{array}{c} \text{Diffraction negligible if} \\ & Z_R > L_{G0} \quad \text{or} \quad \bar{\sigma}_x > 1 \end{array}$$

Diffraction parameter

SLAC

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{split} \left(\mu - \bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2}\right) & A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}') \\ & \times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}\right)\right] = 0. \\ & \bar{\sigma}_\eta = \frac{\Delta\gamma}{\gamma\rho} \end{split}$$

Ene ameter ameter (same as 1-D theory!)

IT LOOKS UGLY BUT... The dispersion relation can be expressed as a function of 4 dimensionless parameters

$$\begin{pmatrix} \mu - \bar{\nu} + \frac{\bar{\nabla}_{\perp}^2}{2} \end{pmatrix} A(\bar{x}) - \frac{1}{2\pi\bar{\sigma}_x^2} \int_{-\infty}^0 \tau d\tau \frac{e^{-\bar{\sigma}_\eta^2 \tau^2/2 - i\mu\tau}}{\sin^2(\bar{k}_\beta \tau)} \int d^2 \bar{x}' A(\bar{x}') \\ \times \exp\left[-\frac{\bar{x}^2 + (\bar{x}')^2 - 2\bar{x} \cdot \bar{x}' \cos(\bar{k}_\beta \tau)}{2\sin^2(\bar{k}_\beta \tau)} \left(i\bar{k}_\beta^2 \tau + \frac{1}{\bar{\sigma}_x^2}\right)\right] = 0.$$
$$\bar{\sigma}_x^2 \bar{k}_\beta = \frac{\varepsilon}{2\varepsilon_r}$$

Emittance parameter

$$\varepsilon_r = \lambda_1/(4\pi)$$

SLAC

Ming Xie Fitting Formula

$$L_G = L_{G0} \frac{\sqrt{3}/2}{\text{Im}(\mu_{00})} = L_{G0}(1+\Lambda)$$

Exact and Variational Solutions of 3D Eigenmodes in High Gain FELs

Ming Xie Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

$$\Lambda = a_1 \eta_d^{a_2} + a_3 \eta_{\varepsilon}^{a_4} + a_5 \eta_{\gamma}^{a_6} + a_7 \eta_{\varepsilon}^{a_8} \eta_{\gamma}^{a_9} + a_{10} \eta_d^{a_{11}} \eta_{\gamma}^{a_{12}} + a_{13} \eta_d^{a_{14}} \eta_{\varepsilon}^{a_{15}} + a_{16} \eta_d^{a_{17}} \eta_{\varepsilon}^{a_{18}} \eta_{\gamma}^{a_{19}}$$

 $a_1 = 0.45, \quad a_2 = 0.57, \quad a_3 = 0.55, \quad a_4 = 1.6, \quad a_5 = 3,$ $a_6 = 2, \quad a_7 = 0.35, \quad a_8 = 2.9, \quad a_9 = 2.4, \quad a_{10} = 51,$ $a_{11} = 0.95, \quad a_{12} = 3, \quad a_{13} = 5.4, \quad a_{14} = 0.7, \quad a_{15} = 1.9,$ $a_{16} = 1140, \quad a_{17} = 2.2 \quad a_{18} = 2.9, \quad a_{19} = 3.2.$

Things I Want You To Remember 5 Months From Now

Spontaneous Power ~ N

Coherent Power ~ N²

Things I Want You To Remember 5 Months From Now

FEL goes from spontaneous to coherent emission by means of a collective instability

Things I Want You To Remember 5 Months From Now

 $\rho = (Kk_p/4k_w)^{(2/3)}$

Rho defines:

-the gain-length of the FEL

-the relative bandwidth of the FEL

-the extraction efficiency of the FEL

-the energy acceptance of the FEL