Laser based ultrashort electron bunch measurement

A. Halavanau, C. K. Huang, P. Niknejadi and D. Yang

August 7, 2015

SLAC Summer Seminar on Electron and Photon Beams
Motivation and outline

Measuring of ultrashort bunches

- Typical electron bunch duration in synchrotron is in order of ps
- FELs require fs bunches to achieve high gain regime
- Time resolution of the streak camera is limited
- Few optical techniques to study ultrashort bunches were proposed

Methods

- Optical replica
- Optical streaking
- Deflecting cavity with optical streaking (optical oscilloscope)
Optical replica method

Schematics

Phase space transformation and measurement

A. Halavanau, C. K. Huang, P. Niknejadi and D. Yang

Laser based ultrashort electron bunch measurement
Operation of the modulator

Electrons moving at a constant speed have net $\Delta \epsilon = 0$ when interacting with a laser in a free space.

Modulator + chicane ($R_{56} = L\theta_B^2$)

$$f_0(P) = \frac{1}{\sqrt{2\pi<(\Delta \epsilon)^2>}} \exp(-\frac{P^2}{2<(\Delta \epsilon)^2>}) \quad \rightarrow \quad f_1(P, \psi) = $$

$$f_0(P - P_0 \sin \psi) \quad \rightarrow \quad f_2(P, \psi) = f_0(P - P_0 \sin(\psi - P \frac{d\psi}{dP}))$$

(very small density modulation in the undulator)

A. Halavanau, C. K. Huang, P. Niknejadi and D. Yang

Laser based ultrashort electron bunch measurement
Operation of the modulator

Current profile

Then 1-D beam density yields \(b_n = e^{-1/2B^2n^2}J_n(-ABn) \), where \(b_n \) is the bunching factor at \(n-th \) harmonic, \(A, B \) some constants.

Optical pulse measurement

By properly adjusting the chicane’s \(R_{56} \) and modulation wavelength, one can achieve higher harmonics in the beam density modulation.

E. Hemsing, et. al., Rev. Mod. Phys. 86, 897

A. Halavanau, C. K. Huang, P. Niknejadi and D. Yang
Laser based ultrashort electron bunch measurement

E.L. Saldin, E. Shneidmiller, M. Yurkov, DESY 04-126
Laser pulse is relatively short, comparable with the bunch length
- Operating on the slope of the laser pulse
- Single shot measurement

Y. Ding, et. al., Proc. of FEL2011, WEPB22
Laser operating at fundamental Gaussian mode

Energy exchange inside the undulator

Laser E-field:
\[
\vec{E}(z, t) = \vec{e}_x \frac{E_0}{\sqrt{1+z^2/z_R^2}} \cos(kz - \omega t + \phi(r, z))e^{-r^2/\omega^2(z)-s^2/4\sigma_s^2},
\]

Where:
\[
k = \frac{2\pi}{\lambda}, \quad z_R = \frac{k\omega_0^2}{2}, \quad \omega^2(z) = \omega_0^2(1 + z^2/z_R^2), \quad r^2 = x^2 + y^2
\]

Normalized transverse velocity:
\[
\vec{v}_x = \vec{e}_x \frac{Kc}{\gamma} \cos(ku z)
\]

Resulting energy modulation:
\[
\frac{d\gamma}{dt} = \frac{e}{mc^2} \vec{E} \cdot \vec{v} = \frac{e}{mc} E_x \beta_x \rightarrow
\]

Y. Ding, et. al., Proc. of FEL2011, WEPB22
E. Hemsing, et. al., Rev. Mod. Phys. 86, 897
Laser operating at fundamental Gaussian mode

Energy modulation

\[mc^2 \frac{d\gamma}{dt} = A(z, \gamma) \cos(kz - \omega t + \phi(r, z)) \cos(k_u z) e^{-r^2/\omega^2(z) - s^2/4\sigma_s^2}, \]

where \(A(z, \gamma) = \frac{cKE_0}{\gamma} \frac{1}{\sqrt{1+z^2/z_R^2}} \)

Normalize \(\bar{z} = z/N\lambda_u \), replace \(t = z/c \), define \(\Delta \gamma = \gamma - \gamma_r \):

\[\Delta \gamma_L(r, s) = A_0 \cos(ks) e^{-r^2/\omega^2(z) - s^2/4\sigma_s^2} \]
Deflecting (sweeping) cavity

Higher order modes of the laser result in more “degrees of freedom”

Schematics

- Can be very compact
- Subfemtosecond temporal resolution (450 to 600 attosecond demonstrated)
- Works well for the wide range of beam energy
Longitudinal profile diagnostic

High power few-cycle TEM_{10} laser in Hermite-Gaussian mode

Energy exchange inside the undulator

E-field: $E_x(x, z, t) \approx \frac{2\sqrt{2}E_0x}{w_R(1+z^2/z^2_R)} \sin [k(z - ct) + \phi]$ (near axis)

Normalized transverse velocity: $\beta_x = -\frac{K}{\gamma} \sin(2\pi z/\lambda_u)$

Resulting energy modulation:

$$\frac{d\gamma}{dt} = \frac{e}{m_0c} E_x \beta_x \quad \rightarrow \quad \frac{\Delta\gamma}{\gamma} = Akx_0 \cos(k s_0)$$

Deflection method

Transverse coordinates

\[x_f = x_i + L(x'_i + A \sin(ks_0)) \]
\[y_f = y_i + L(y'_i + A_{rf} k_{rf} s_0) \]
Beam parameters

For a round beam: \(\frac{A_{rf} k_r f L \sigma_s}{\sigma_x} >> 1 \) and \(\frac{A L}{\sqrt{2} \sigma_D} >> 1 \)

TABLE II. Beam and laser parameters used in the NLCTA simulation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>(E)</td>
<td>120 MeV</td>
</tr>
<tr>
<td>Normalized emittance</td>
<td>(\epsilon_n)</td>
<td>1 mm mrad</td>
</tr>
<tr>
<td>Energy spread</td>
<td>(\sigma_y)</td>
<td>(1 \times 10^{-4})</td>
</tr>
<tr>
<td>Undulator peak field</td>
<td>(B_0)</td>
<td>1.075 T</td>
</tr>
<tr>
<td>Undulator period</td>
<td>(\lambda_u)</td>
<td>6 cm</td>
</tr>
<tr>
<td>Undulator length</td>
<td>(L_u)</td>
<td>18 cm</td>
</tr>
<tr>
<td>Undulator parameter</td>
<td>(K)</td>
<td>6.0</td>
</tr>
<tr>
<td>Laser wavelength</td>
<td>(\lambda)</td>
<td>10.6 (\mu)m</td>
</tr>
<tr>
<td>Laser power</td>
<td>(P_L)</td>
<td>500 GW</td>
</tr>
<tr>
<td>Laser waist</td>
<td>(w_R)</td>
<td>1 mm</td>
</tr>
</tbody>
</table>
Deflection method (NLCTA simulations)

E. Hemsing, et. al., Rev. Mod. Phys. 86, 897
A. Halavanau, C. K. Huang, P. Niknejadi and D. Yang

Laser based ultrashort electron bunch measurement
Conclusions

• Optical replica method has been demonstrated in a proof-of-principle experiment. However, complex features of current profile, such as microbunching, may result in inaccurate result (FEL08 THBAU04, DESY)

• Optical streaking is simpler, but requires the electron bunch to have small slice energy spread and good synchronization with a laser to operate at the intensity slope (proposed for SLAC)

• Optical oscilloscope method can provide better resolution than traditional deflecting cavity measurement but requires costly laser (recent experiment at ATF@BNL)