Blowout regime for generation of ellipsoidal beam

C. Emma, J. Franssen, X. Nie, M. Weikum

August 6th 2015

SLAC Summer School on Electron and Photon Beams

What is the Blowout Regime????

Basic Physics Image

What we want: Ideal Ellipsoidal Electron Bunch

O.J. Luiten et al., Phys. Rev. Lett. 93, 094802 (2004)

Why the uniformly filled ellipsoid?

Self-electric fields in the beam are our enemy!

$$E_{z}(\tilde{z},r=0) = \frac{\tilde{\rho}}{2\varepsilon_{0}} \left[\sqrt{R^{2} + (\tilde{L} - \tilde{z})^{2}} - \sqrt{R^{2} + \tilde{z}^{2}} + \left(2\tilde{z} - \tilde{L}\right) \right]$$

Suffers from:

Edge erosion Nonlinear fields at edges Severe practical difficulties with laser

Self-electric fields in the beam can be our friends!

Uniformly Filled Ellipsoid: Waterbag Beam

SLAC

Uniformly filled

Beer Can Beam

Cylinder:

Suffers from...nothing! Linear emittance growth can always be corrected

Advantages!

Linear phase space distribution → ideal for compression

SLAC

 Initial longitudinal electron density profile is irrelevant, if bunch duration is short

Blowout: Similar to a Collapsed Star

A typical uniform 3D ellipsoidal model: Star

The cylinder is compressed into a ring, with area dencity $\sigma \propto \sqrt{A^2 - r^2}$ 8

$$\rho(\mathbf{r}, \mathbf{z}) = \sigma_0 \sqrt{1 - \left(\frac{r}{A}\right)^2 \delta(z)}$$

O.J. Luiten et al., Phys. Rev. Lett. 93, 094802 (2004)

Basic Mechanism->simulations

IT WORKS...at least on a computer!!

Real Experimental Results

Reality check:

- What laser pulse length is small enough?
- When can we ignore image charge space charge fields?

$$\frac{eE_{acc}c\tau_l}{mc^2} \ll \frac{\sigma_0}{\varepsilon_0 E_{acc}} \ll 1$$

Streak Camera Image @ end of beamline

3D Laser Shaping

3D Laser Shaping

Y. Li and J. Lewellen, Phys. Rev. Lett. 100, 074801 (2008)

3D Laser Shaping

Y. Li and J. Lewellen, Phys. Rev. Lett. 100, 074801 (2008)

What's going on

SLAC

Modification of ω Depends on time Modification of w Depends on time

Modification of Electron beam size Depends on z

Simulation Results

-SLAC

Y. Li and J. Lewellen, Phys. Rev. Lett. 100, 074801 (2008)

...& limitations

- Large transverse laser spot size required to limit surface charge density:
- → Increase in thermal transverse norm. emittance with respect to other beam shapes (Luiten regime)
- Distortions from the ideal ellipsoid due to:
- group velocity delay and diffraction effects (laser shaping)
- Radial laser profile

Space charge field of the image charge at the cathode → asymmetry at the bunch tail

Need to limit the space charge field to less than 10% of the accelerating field to avoid beam degradation

head

Conclusions

- I. The uniformly filled ellipsoid is awesome...at least in theory.
- II. Analytical calculations have been verified by both simulation and experiment with good agreement
- III. Limitations of the scheme are:
 - I. Challenging experimental realization particularly in the laser pulse
 - II. Only valid for laser pulses very short compared to the radial size of the beam
- IV. Ideal for applications in future FEL facilities or any high brightness electron beam sources

References

- O.J. Luiten et al., Phys. Rev. Lett. 93, 094802 (2004)
- P. Musumeci et al., Phys. Rev. Lett. 100, 244801 (2008)
- B. O'Shea et al., Phys. Rev. ST Accel. Beams 14, 012801 (2011)
- P. Piot et al., Phys. Rev. ST Accel. Beams 16, 010102 (2013)
- Y. Li and J. Lewellen, Phys. Rev. Lett. 100, 074801 (2008)

Thanks for a great week!

