Measuring Ultrashort Xray Pulses in FELs

K Larsen E Curry A Hanuka J MacArthur Y Xu

Outline

@ Motivation*@* Methods

- 1. Spectrometer
- 2. Cross-correlation
- 3. RF deflection
- 4. Thz streaking camera
- @ Comparison & Summary

Motivation

• Utilization of

ultrashort X-ray pulses

- o molecular biology
- \circ chemical dynamics
- material science

- Analysis of femtosecond pulses required
- Typical nonlinear optical techniques have not been extended to x-rays.

High Resolution X-ray Spectrometer

• Principles

- Fourier transform.
- Uncertainty principle.

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$

- Measurements at SACLA in different bunch compression modes.
- **SIMPLEX simulation** applied to measurements to characterize pulse duration.

High Resolution X-ray Spectrometer

- Spectral **resolution** 14meV at 10keV.
- Applicable to a **wide EM range** (VUV, soft x-rays, hard x-rays).

otivation Methods

Energy chirp (fs⁻¹)

2x10 — 4x10

8x10

600

500

400

300

700

High Resolution X-ray Spectrometer

• Steps • Measure spectra ~> fit rms ^oulse duration (fs) deviations to spikes 10 ~> use values in simulation ~> construct temporal 100 200 Spike width (meV) profile

Cross-Correlation

- Intensity autocorrelation: useful for lasers
- Problem: not for x-rays!
- Solution: cross-correlate x-rays with e-beam

Cross-Correlation

1. Chirp electron beam

- 2. Chicane 1: slice beam in chicane
 - tor 1. apporato 2 y ray pulsos
- 3. Undulator 1: generate 2 x-ray pulses
- 4. Chicane 2: delay e-beam
- 5. Undulator 2: amplification of x-ray pulse 2

Cross-Correlation

Results:

Advantages:

- no additional equipment **Disadvantages:**
 - Requires dedicated setup (low power)
- Must assume gaussian (or similar) profile

- Horizontal streaking from two X-band deflector cavities
- Better time resolution than S-band

otivation Methods mparisor

RF Deflection

Energy loss measurement - X-ray power, $P(t_i) = \Delta E(t_i) \times I(t_i)/e$ **Energy spread confirmation**

0

50

0

Time (fs)

-40

-50

RF Deflection

Temporal resolution: soft X-ray 1 fs, hard X-ray 4 fs **Advantages:** Non-destructive measurement

Applications: tapering optimization

- kick beam to "lasing-off" trajectory
- study resulting temporal and energy profile

FEL pulse ionizes gas

Free electrons

THz field streaks them

Kinetic energy is measured

THz streaking

THz streaking

 $t_{Xray} = 15 \pm 3 f_{S}$

Take away

Take away		TAKE AWAY
Spectrometer	ОК	still relies on simulation
Cross-correlation	Good	temporal and energy info, but low power operation required
RF deflection	Better	temporal and energy info, non- destructive
Thz streaking camera	Best	temporal and energy info, direct measurement (potential for phase info), non-destructive???

U. Frühling, Nature photonics, 3, 523 - 528 (2009)
Y. Ding et al., Phys. Rev. ST Accel. Beams 14, (2011)
Y. Inubushi et al., Phys. Rev. Lett. 109, (2012)
Y. Ding et al., Phys. Rev. Lett. 109, (2012)
C. Behrens et al., Nature communications, (2014)

Thanks for the attention!

