Photon Beamlines

Photon Beamline

A photon beamline is everything necessary to transport the FEL photon beam, generated into the undulators, to the experimental chamber

OUTLINE:

- Principle of X-ray optics
- Wavefront preserving optics: needs, production and measurement
- Optics damage handling
- Diffractive elements (wavelength diagnostic)
- Focusing elements

Photon energy regions

SXR: These regions are very interesting because are characterized by the presence of the absorption edges of most low and intermediate Z elements; photons with these energies are a very sensitive tool for elemental and chemical identification. PROBLEM: Absorption edges are bad things for photon transport
HXR: This region provide highly penetrating radiations, it is useful to study bulk rather than surface. The short wavelength make possible high spatial resolution microscopy or diffraction techniques. PROBLEM: penetration is not good for reflective optics.

Refraction index

refractive index $\quad \mu=1-\delta-i \beta$

Snell law

$\mathrm{n}>1$
$\mathrm{n}<1$

Snell's law: $\mathrm{n}_{1} \cos \gamma=\mathrm{n}_{2} \cos i$

Fermat's principle
The Light travels the path from A to B in the minimum possible time (valid for every wavelength)
D. Cocco, SSSEPB 2015 - Photon Beamlines

Snell law - Lenses

$$
\delta \approx 10^{-4} \quad H X R \Rightarrow f \approx 1 m \quad \text { if } \quad R \approx 1 \mathrm{~mm}
$$

D. Cocco, SSSEPB 2015 - Photon Beamlines

X-ray lens

if $\quad R \approx 1 \mathrm{~mm}$

This could be, in principle, all you need

Total external reflection

Snell's law: $\mathrm{n}_{1} \cos \gamma=\mathrm{n}_{2} \cos i$
Snell's law ($\mathrm{n}_{1}=1$, vacuum):

$$
\cos \gamma=\cos i / n
$$

$$
\gamma=0 \mathrm{n}=\cos i_{\mathrm{c}}
$$

i_{c} critical angle: total external reflection

$$
\begin{gathered}
\sin i_{\mathrm{c}}=\lambda\left(\mathrm{e}^{2} \mathrm{~N} / \pi \mathrm{mc}^{2}\right)^{1 / 2} \\
\lambda_{\mathrm{c}}(\mathrm{~min})=3.333 \cdot 10^{-13} \mathrm{~N}^{-1 / 2} \sin i_{\mathrm{c}}
\end{gathered}
$$

Material	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	N $\left(\right.$ electron $\left./ \mathrm{cm}^{3}\right)$	$\lambda_{\min }$ nm
Pentadecane (oil)	0.77	7×10^{22}	$64.1 \sin i$
Glass	2.6	78×10^{22}	$37.9 \sin i$
Aluminum oxide	3.9	115×10^{22}	$31.2 \sin i$
Gold	19.3	466×10^{22}	$15.4 \sin i$

$i=5^{\circ}: \quad \lambda_{\text {min }}$ glass $=3.3 \mathrm{~nm}=375 \mathrm{eV}$ $\lambda_{\text {min }}$ gold $=1.34 \mathrm{~nm}=923 \mathrm{eV}$

$$
\begin{aligned}
& \text { gold } \\
& 600 \mathrm{eV} \Rightarrow i_{\mathrm{c}} \approx 7.4^{\circ} \\
& 1200 \mathrm{eV} \Rightarrow i_{\mathrm{c}} \approx 3.7^{\circ} \\
& 5 \mathrm{keV} \Rightarrow i_{\mathrm{c}} \approx 0.9^{\circ}
\end{aligned}
$$

Mirror reflectivity and critical energy Soft X-ray

SLAC

Mirror Reflectivity and critical angle (Hard X-ray)

Mirror dimension

$1 \mathrm{~mm} / \sin \left(0.2^{\circ}\right)>1.5 \mathrm{~m}$

$4-5 \mathrm{~mm} / \mathrm{sin}\left(2^{\circ}\right)<200 \mathrm{~mm}$
D. Cocco, SSSEPB 2015 - Photon Beamlines

Defect effect

Object

Tangential focusing

Defect effect

$$
\Delta s^{\prime}=2 r^{\prime} \sigma
$$

Object

Defect effect (slide made on 2004)

$$
\Delta s^{\prime}=2 r^{\prime} \sigma
$$

Capabilities (SR suppliers) (updated)

Typical manufacturer capabilities (SESO, zEISS, Winlight, Insync)

Shape	Length	rms errors
Spherical/flat	Up to 500 mm	$<0.1 \mu \mathrm{rad}$
Spherical/flat	$>500 \mathrm{~mm}$	$<0.5 \mu \mathrm{rad}$
Toroidal	Up to 500 mm	$\sim 1 \mu \mathrm{rad}$
Toroidal	$>500 \mathrm{~mm}$	$\sim 2 \mu \mathrm{rad}$
Elliptical	Up to 500 mm	$\geq 1-2 \mu \mathrm{rad}$
Elliptical	$>500 \mathrm{~mm}$	$>2 \mu \mathrm{rad}$

Capabilities

State of the art SR manufacturer capabilities

FEL mirrors (shape errors)

Strehl Ratio $\approx \mathrm{e}^{-(2 \pi \varphi)^{2}} \approx 1-(2 \pi \varphi)^{2}$
$\varphi=\frac{2 \delta h \sin \vartheta}{\lambda}$ φ is the wave distortion (phase)

The Strehl Ratio (SR) is defined as a ratio of the maximum intensity in the focus, with and without wave front distortions which are introduced by the optics

Shape errors effects

The Marechal Criterion states that a good optical system has a $S R \geq 0.8$; e.g. In focus: the Gaussian spot intensity is ≥ 0.8 of the unperturbed Gaussian spot intensity

Simulations of 3 mirrors in one direction and 1 in the other for a global SR of 0.8

Shape errors effects

We need better...........

How to compensate wavefront distortions

SILAC

HXR; $1.35 \mathrm{mrad}, 13 \mathrm{keV} \rightarrow \mathbf{0 . 5 6} \mathbf{n m} \mathbf{~ r m s}$ SXR; $12.0 \mathrm{mrad}, 1.3 \mathrm{keV} \boldsymbol{\rightarrow} \mathbf{0 . 6} \mathbf{n m} \mathbf{~ r m s}$

Angle of incidence (mrad/deg)	Photon Energy $($ KeV $)$	Shape error (nm)
$1.35 / 0.077$	5	4.6
	20	1.1
	13	1.78

Mirror shape errors FEL

Wavefront Preservation - acceptance

Affected by truncation (limited acceptance) and wavefront deformation (shape errors)

2 FWHM accept.

1 FWHM accept.

The LCLS mirrors were procured according to the state of the art availability e.g.
450 mm long mirrors with 2 nm rms shape error (compromise between shape and length)

Out of focus beam

LCLS is upgrading the mirrors with better figure and larger acceptance

State of the art evolution

*LCLS mirrors are specified in height (nm rms).

Polishing (CCP) effect

SLAC

Estimated best quality: 2-3 nm rms; $0.5 \mu \mathrm{rad} \mathrm{rms}$

Ion beam finishing

Ion beam finishing

Estimated best quality: $1 \mathrm{~nm} \mathrm{rms} ; 0.1 \mu \mathrm{rad} \mathrm{rms}$
D. Cocco, SSSEPB 2015 - Photon Beamlines

Preferential deposition technique

1) Classical polishing
2) High precision metrology
3) Error correction by Rh controlled deposition
4) Second itaration with metrology
5) Second differential coating deposition
6) Third.....
7)
8)
9)

nn) Final required slope/shape error reched (hopefully)

Estimated best quality:
2-3 nm rms; $0.1 \mu \mathrm{rad} \mathrm{rms}$

Elastic Emission Machining - Jtec

Processing technique to flat a surface in an atomic level

Strong Points :

1. Owing to processing at an atom level, it is possible to be flatted at an atom level.
2. For chemical processing, no distortion on surface. 3. For regional processing by numerical control, it is possible to make various shape of mirrors.

Pre-polishing (1.3 nm rms)

> Measuring

Apply atomic level correction (0.14 nm rms)

Elastic Emission Machining - Jtec - Performance

Processing technique to flat a surface in an atomic level

Roughness : $0.056 \mathrm{~nm}(0.6 \AA$) rms

Measured best quality: 0.2 nm rms; $0.05 \mu \mathrm{rad} \mathrm{rms}$

State of the art evolution

Metrology improvement drove the mirror manufacturing improvement and, ultimately, push the science forefront limits*
*....ok... it's a bit of a stretch...

Power Spectral Density

The rms deviation from the ideal surface at different periods is called the Power Spectral Density

$$
\sigma=\left(\int_{f_{\min }}^{f_{\max }} P S D(f) d f\right)^{1 / 2}
$$

A metrology lab

Clean Room class 10,000 minimum, 1,000 ideally. Thermo stabilized within $\pm 1^{\circ}$ minimum (0.1° or better ideal)

LTP / NOM

Direct slope measurement 50 nrad slope error accuracy (0.1 nm rms accuracy) after proper calibration and environmental control Single trace measurement up to $1.2-1.5 \mathrm{~m}$ in length. Minimum spatial period covered ~ 1 mm

Interferometer
Direct height measurement
~ 0.5 nm rms after proper calibration and environmental control.
2D images up to 6' diameter Possibility of stitching reducing the accuracy. Minimum spatial period covered $\sim 0.05 \mathrm{~mm}$

White light micro interferometer
Direct heigth measurement
0.1 nm rms in proper environmental condition.
2D images up to $\sim 0.5 \mathrm{~mm}^{2}$
Minimum spatial period covered ~ $0.5 \mu \mathrm{~m}$

Long Trace Profilometer

We need something to measure accurately (0.1 nm rms) mirror with length up to 1 m minimum (1.5 m future prevision) and with arbitrary surface profile

LTP
P. Takacs, S.N. Qian, S. Irick

By using an autocollimator

THE autocollimator to use is the Elcomat 3000/10 (by Möller-Wedel)

- Works in presence of multiple reflections
- Specifically developed for metrology application
- Simple repeatability 100 nrad (10 nrad averaging)
- Un-calibrated accuracy: 200 nrad over $100 \mu \mathrm{rad}$ (fix distance).
- Accuracy worst than 1μ rad in the entire field of view.
- 10 mrad field of view

Precise but needs a lot of calibration

Fizeau Interferometer

3(D measurement of optical surfaces Zygo specs: $\lambda / 500$ precision Tipical: $\lambda / 2-3000$ repeatability

Direct measurement of radii down to $20-30 \mathrm{~m}$
Optional Accessories
Transmission spheres
$\mathrm{f} / 1.5-2$ for sagittal radii and NI mirrors with $\mathrm{R}<1 \mathrm{~m}$
$\mathrm{f} / 15-30$ diverger for NI mirrors with $\mathrm{R}>2 \mathrm{~m}$

Optical surface damage

Above the grazing critical angle

The non reflected energy is absorbed (1/e) in $d>$

$$
\begin{array}{r}
d=\frac{\lambda \zeta}{4 \pi \beta} \\
\zeta=\sqrt{\frac{\sin ^{2} \theta-2 \delta+\sqrt{\left(\sin ^{2} \theta-2 \delta\right)^{2}+4 \beta^{2}}}{2}}
\end{array}
$$

$$
n=1-\delta-i \beta
$$

$$
\delta=\frac{N e^{2} \lambda^{2}}{2 \pi m c^{2}}
$$

Below the grazing critical angle

$\mathrm{R}=$ reflectivity
$P=$ pulse power
$\theta=$ angle of incidence
$r=$ source distance
$\sigma=$ source divergence
$\rho=$ atomic density

$$
\text { Aborbed } \text { Energy }_{\text {ATOM }}=\frac{(1-R) P \sin \vartheta}{r \sigma_{x} \sigma_{y} d \rho}
$$

Ideal coating should have a large penetration depth (light materials) and good reflectivity (usually associated with heavy materials)

Optical surface damage

LCLS II case: 200 to 1300 eV with 2 mJ incident pulse energy

Try to work at the lowest possible angle of incidence spread the power over a large surface

Energy absorbed vs critical angle

Example of damage for UV sources (Fermi@Elettra)

Measured at 400 nm at the EIS laser lab

Test on LCLS mirror samples

Dispersive elements

Micro wave	I.R.	Visible	U.V.	Soft X-ray	Hard X-ray

$$
\text { limit ~ 1-2 keV (} 1 \mathrm{~nm} \text {) }
$$

Micro wave	I.R.	Visible	U.V.	Soft X-ray	Hard X-ray

$n \lambda=d(\sin (\alpha)-\sin (\beta))$

Grating profiles

SLAC

Higher efficiency

Higher spectral purity Higher resolving power

Grating Efficiency

Efficiency as a function of the groove depth for two different photon energies

Grating Damage (laminar)

A lot of energy deposited on the grating facet

Grating Damage (blaze)

A lot of energy deposited on the grating facet

Energy distributed on the grating facet

Damage tests on gratings

Fig. 1. (Color online) Top: schematic of the interaction of the experiment. Below: DIC microscopy (left) and AFM (right) measurements for three different fluences 356 (A), 806 (B), and $1115 \mathrm{~m} . / \mathrm{cm}^{2}$ (C).

The reported damage threshold ($0.5 \mathrm{eV} / \mathrm{atm}$) is 3 times lower the observed on a flat mirror. $1.5 \mathrm{eV} /$ atom $)$
Optics Letter Vol. 37 (15) 2012, 3033

Single Shot damage ~ 8-10 eV/atom
Multi shot damage $\sim 720 \mathrm{meV} /$ atom
Defined the maximum working energy for the Pt grating according to these tests

Damage tests on gratings

Result still under investigation but, it looks like that the grating has the same damage threshold of a mirror with an angle of incidence identical to the angle of the grating facet with respect the radiation. It means, the blaze angle shall be really small!

Mechanically ruled grating

- Thermal evaporation of Gold

Si substrate

Mechanically ruled grating - toward very shallow blaze angle

- Thermal evaporation of Gold on the Si substrate (plus Cr binding layer)
- Grooves formed by plastic deformation of the ruling layer
 -Realization of low microroughness blaze grating with $20<\mathrm{gd}<5000 \mathrm{l} / \mathrm{mm}$ and down
- to 1.5° of blaze angle
- Ar ${ }^{+}$ion etching (200 mm diameter collimated beam)
- Ar^{+}ion etching rate on gold much larger then on Silicon
- An angle reduction of a factor 3 (even higher if $\mathrm{Ar}^{+}+\mathrm{O}^{+}$is used) can be achieved by this technique
- Roughness and anti blaze angle are also reduced.

Shallow Blaze Angle grating

> Plane substrate $600 \mathrm{l} / \mathrm{mm}$ gold coated $80 \times 5 \mathrm{~mm}$ useful area, 6laze angle 0.4°

On Line Spectrometer

Groove density expanded in Taylor series

$$
D(y)=D_{0}+D_{1} y+D_{2} y^{2}+\ldots
$$

Beam from source
$1^{\text {st }} / 2^{\text {nd }}$ internal order to detector (~0.1-3\%)

Zeroth order $\frac{\text { to the beamlines }}{(\sim 97 \%)}$
$D<; \beta>$
D> : β

Movable Detector YAG+CCD

$$
r^{\prime}(E), \beta(E)
$$

Measured HGHG Seeded FEL beam

Curtesy of Fermi@Elettra - PADReS

FEL Monochromator

To survive and handle the variable focal
Flat mirror distance (without adaptive optics involved) the
Fixed incidence
angle VLS grating grating must be a VLS of more than 500 mm in length

Variable source distance

Fixed focal distance and direction

Source position calculated by J. Krzywinski

Pulse Length preservation

$$
\Delta t=\sqrt{\left(\frac{N \lambda}{c}\right)^{2}+\delta t^{2}}
$$

Pulse Length preservation

Need of long substrates to distribute the power:
$1200 \mathrm{l} / \mathrm{mm}$ grating, $500 \mathrm{~mm}, 500 \mathrm{eV}$
$\sim 5,000$ fsec
$10 \mathrm{l} / \mathrm{mm}$ grating, $500 \mathrm{~mm}, 500 \mathrm{eV}$
~ 40 fsec
1-100 fs

$$
\Delta t=\sqrt{\left(\frac{N \lambda}{c}\right)^{2}+\delta t^{2}}
$$

Conical Diffraction

D. Cocco, SSSEPB 2015 - Photon Beamlines

Bragg Law

EXAMPLES: $\quad \operatorname{Si}(111) d=3.13 \AA \rightarrow$ Emin $\approx 2 \mathrm{KeV}$

$$
\operatorname{InS6}(111) d=3.74 \mathscr{A} \rightarrow \text { Emin } \approx 1.7 \mathrm{KeV}
$$

Radiation of wavelength λ is reflected by the lattice plane. The outgoing waves interfere. The interference is constructive only if the difference of optical path is a multiple of λ :

$2 d \sin \vartheta=n \lambda$

Limits:

$\sin \vartheta=1 \Rightarrow \lambda_{\max }$

$$
\lambda_{\max }=2 \mathrm{~d} @ \theta=90^{\circ}
$$

$$
\operatorname{Si}(311) d=1.64 \AA \rightarrow \text { Emin } \approx 3.8 \mathrm{KeV}
$$

$$
\operatorname{Beryl}(1010) d=7.98 \AA \mathscr{A} \rightarrow \text { Emin } \approx 0.8 \mathrm{KeV}
$$

Spectrographs

Grating based spectrometer (Soft X-ray)

Measurement of the LCLS HXR SASE spectrum

2D focusing - 1 mirror option - Ellipsoid

2D focusing - 1 mirror option - Ellipsoid

2D focusing - 2 mirrors option

Formation of Optical Images by X-Rays

Paul Ktheateick and A. V. Bapz Stanfard Unibersily, Slamfard, California
(Received March 12, 1048)

Several conceivable methods for the formation of optigal images by x-rays are considered, and a method employing concave mirrors is adopted as the most promising. A concave spherical mirror receiving radiation at grazing incidence (a necessary arrangement with x-rayn) images a polnt isto a line in accordance with a focal length $f=R / / 2$ where R is the radias of curvature and i the graxing angle. The imase is subtient in an ahereatinn surh that a rav
point of central rays by a distance given approximately by $5=1.5 \mathrm{M} r^{2} / R$, where M is the magnification of the image and r is the radius of the mirror face. The theoretlcally possible resolving power is such as to resolve point objects separated by about 70A, a limie which is independent of the wavelength used. Point inages of points and therefore extended images of extended objects may he nondareat twe mastion the madistion on mellers formen amo

This optical configuration is generally known as KB optics.
Could be made by 2 spherical mirrors, two elliptical mirror or other shapes, static or adaptive.

Vertical focusing mirror

Horizontal focusing mirror

4 cylinders bender (SESO)

ESRF Trapezoidal Bender

Need to control at least 3 parameter to approximate an ellipse starting from a flat

ESRF Trapezoidal Bender

SLAC

ID 22 Spot size measurement

Horizontal scan

KB system for high power FELs

With high repetition FELs, for the very first time, the active optics shall, also, be cooled*

Radiation focused on two separate experimental position

Previous mirrors

Virtually no residual rms slope errors when focusing in the $1^{\text {st }}$ chamber

Residual rms slope errors when focusing in the second chamber

HFM: $0.13 \mu \mathrm{rad} \longrightarrow \sim 3 X 5 \mu \mathrm{~m}^{2}$ spot $2^{\text {nd }}$ chamber
VFM: $0.42 \mu \mathrm{rad} \longrightarrow$

Wavefront distorsion compensation

Bimorph Mirrors

Correction Matrix

Shape Correction

$$
\mathrm{R}=4.5 \mathrm{Km}
$$

Zone Plate

SLAC

Zone Plate

$$
\sin \theta_{m}=\frac{m \lambda}{d} ; \quad m=0, \pm 1, \pm 2, \pm 3
$$

Zone Plate

$$
r_{n}^{2}=f n \lambda \quad l \begin{aligned}
& q_{n}+p_{n}=q+p+\frac{n \lambda}{2} \\
& q_{n}=\left(q^{2}+r_{n}^{2}\right)^{1 / 2} \simeq q+\frac{r_{n}^{2}}{2 q} \\
& p_{n}=\left(p^{2}+r_{n}^{2}\right)^{1 / 2} \simeq p+\frac{r_{n}^{2}}{2 p} \\
& q+\frac{r_{n}^{2}}{2 q}+\not p+\frac{r_{n}^{2}}{2 p} \simeq \not q+\not p+\frac{n \lambda}{2} \\
& \frac{1}{q}+\frac{1}{p} \simeq \frac{n \lambda}{r_{n}^{2}}
\end{aligned}
$$

Zone Plate

Zone Plate

Zone Plates under FEL beam

High Aspect Ration Zone Plate

Scanning electron microscope (SEM) images of zone plates pattern produced with the V-MACE technique.
(Ref. Chieh Chang, Anne Sakdinawat)

Very good efficiency on the HXR but... does it survive the FEL radiation?

Literature

Books/tutorials

- W. B. Peatman: Gratings Mirrors and Slit Gordon Sci. Publ. Amsterdam (1997)
- D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press
- A.A. Modern Developments in X-ray and Neutron Optics Springer Series in Optical Science 137
- CXRO X-ray data booklet Lawrence Berkeley Nat. lab.
- EuroFEL compendium on Photon Transport and diagnostics (http on request)
- Synchrotron Radiation Sources and Optical devices, Chapter 4 of "Magnetism and Synchrotron Radiation: New Trends" Springer Proc. in Physic 133
- Special issues of photonics on EUV Lasers: http://www.mápi.com/journal/photonics/special_issues/EUVL

