Structural integrity: key factor to suppress voltage fade of Lirich layered cathode materials

<u>Yahong xu</u>^{1,2}, Enyuan Hu³, Feifei Yang⁴, Jeff Corbett¹, Zhihong Sun², Yingchun Lyu⁵, Xiqian Yu^{3,5}, Xiao-Qing Yang^{3,5}, Hong Li⁵, Yijin Liu¹

 ¹Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
²College of Mechanical Engineering, Donghua University, Shanghai, China
³Department of Chemistry, Brookhaven National Laboratory, Upton, NY, USA
⁴Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Science, UCSF, San Francisco, CA, USA

⁵Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China

Lithium-ion batteries are common in home and portable electronics due to their high energy density and slow self-discharge properties. The development of high capacity Li-ion materials is, therefore, vital for industry. Typically, the desired high energy capacity is accompanied by complex phase transitions, structural rearrangement and volume changes, which induce strain and morphological changes within the battery that affect the electrochemical behavior of the electrode material.By combining x-ray spectroscopy, diffraction and microscopy measurements, promising cathode material's, Li₂Ru_{0.5}Mn_{0.5}O₃, evolution during repeated cycling is studied to provide a comprehensive understanding of voltage fade through 2D and 3D visualization of the morphology reconstruction and heterogeneity evolution at fine scale lengths.