Probing Topological Materials with Spin-, Time-, and Angle-Resolved Photoemission Spectroscopy

<u>H. Xiong</u>^{1,2}, J.A. Sobota^{1,2,3}, H. Soifer^{1,2}, A. Gauthier^{1,2}, S.-L. Yang^{1,2}, C. Jozwiak³, K. Gotlieb^{3,4}, A.F. Kemper^{3,5}, Y.-F. Chen⁶, C.R. Rotundu², R.J. Birgeneau^{3,4}, M.-H. Lu⁶, Z. Hussain³, D.-H. Lee^{3,4}, D. Lu², M. Hashimoto², A. Lanzara^{3,4}, P. S. Kirchmann², Z.-X. Shen^{1,2}
¹ Stanford University, Stanford, CA 94305, USA
² SLAC National Accelerator Lab, Menlo Park, CA 94025, USA
³ Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
⁴ University of California, Berkeley, CA 94720, USA
⁵ North Carolina State University, Raleigh, NC 27695, USA
⁶ Nanjing University, Nanjing, Jiangsu 210093, China

Topological insulators have been the focus of intense investigation because of their unique spin-polarized surface states. Here we present detailed studies of two relevant materials: (1) We use laser-based ARPES to study the band structure of the potential topological insulator ZrTe₅. We find a small gap between the conduction and valence bands, which suggests that it is not a strong topological insulator. In addition, the bands exhibit a temperature-dependent binding energy shift which we associate with a variation of doping level. (2) We use time- and spin- resolved ARPES to study unoccupied states of the prototypical topological insulator Bi₂Se₃. We identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture. Calculations show that these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion.