Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites

Xiaoxi Wu¹, Liang Z. Tan², Xiaozhe Shen³, Te Hu⁴, Kiyoshi Miyata⁵, M. Tuan Trinh⁵, Renkai Li³, R. Coffee³, Shi Liu², David A. Egger⁶, Igor Makasyuk³, Qiang Zheng³, Alan Fry³, J. S.Robinson³, Xijie Wang³, X.-Y. Zhu⁵, Leeor Kronik⁶, Andrew M. Rappe², Aaron Lindenberg^{1,4,7}

¹Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

²The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA

³SLAC National Accelerator Laboratory, Menlo Park, CA 94025

⁴Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA

⁵Department of Chemistry, Columbia University, New York, NY 10027, USA

⁶Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel

⁷PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025

Femtosecond resolution electron scattering techniques are applied to resolve the first atomic-scale steps following absorption of a photon in the prototypical hybrid perovskite methylammonium lead iodide. Following above-gap photo-excitation, we directly resolve the transfer of energy from hot carriers to the lattice by recording changes in the root-mean-square atomic displacements, on ten picosecond time-scales. Measurements of the time-dependent pair distribution function show an unexpected broadening of the iodine-iodine correlation function while preserving the Pb-I distance. This indicates the formation of a rotationally-disordered halide octahedral structure developing on picosecond time-scales. This work shows the important role of light-induced structural deformations within the inorganic sublattice in elucidating the unique optoelectronic functionality exhibited by hybrid perovskites and provides new understanding of hot carrier – lattice interactions which fundamentally determine solar cell efficiencies.