Tabletop picosecond time-resolved x-ray emission and absorption spectroscopy with ultra-efficient spectrometers G. O'Neil¹, L. Miaja-Avila¹, Y.I. Joe¹, B.K. Alpert¹, M. Balasubramanian², N.H. Damrauer³, W. Doriese¹, S.M. Fatur³, J.W. Fowler¹, W.K. Fullagar⁴, N. Chen⁵, G.C. Hilton¹, R. Jimenez³, B. Ravel⁶ ¹National Institute of Standards and Technology, Boulder, CO, USA ² Advanced Photon Source, Lemont, IL, USA ³ University of Colorado Department of Chemistry and Biochemistry, Boulder, CO, USA ⁴Lund University Department of Chemical Physics, Lund, Sweden ⁵Canadian Light Source, Saskatoon, SK, Canada ⁶National Institute of Standards and Technology, Gaithersburg, MD, USA Ultra-efficient microcalorimeter spectrometers enable time resolved x-ray emission and absorption measurements in the lab. We show two examples of time-resolved x-ray measurements with 2-3 ps time resolution, preformed in a lab with a laser-plasma x-ray source. The working principles of the microcalorimeter spectrometer are explained, and a quantitative comparison to wavelength dispersive spectrometers is made. The potential for these spectrometers to be used at SSRL and the LCLS, or for pre-screening samples in a lab before beam time, is discussed. Finally, we will point you towards two posters in this session showing results from the new SSRL 10-1 microcalorimeter spectrometer.