

Science and Technology Center

1. Outline

- In the absence of stochastic artifacts, XFEL singleparticle snapshots can differ in particle orientations and conformations.
- Using experimental data from PR772 virus (SPI-AMO86615), we show that manifold embedding is able to determine the 3D structure of this virus to the resolution corresponding to the detector edge.

<u>2. XFEL Snapshots of PR772 Virus</u>

Large viruses scatter millions of photons per shot

- This is much larger than needed for 3D reconstruction in the absence of strong stochastic effects
- However, diffraction patterns are strongly affected by extraneous effects such as shot-to-shot variations in intensity, aperture scattering, and background stochastic noise, etc.

Pixel Q

 ψ_2

3. Manifold Embedding Approach

- Manifold Embedding = nonlinear PCA
- All we have is ensemble of diffracted intensities.
- Ensemble of snapshots produces a cloud of points
- Manifold embedding by Diffusion Map extracts (nonlinear) manifold describing the signal.
- Diffusion Map provides mathematical link to "cloud" of points" via Laplace-Beltrami operator.

Structure Determination of PR772 Virus from Single-particle XFEL Data A. Hosseinizadeh¹, P. Schwander¹, G. Mashayekhi¹, J. Copperman¹, A. Ourmazd¹ and the SPI collaboration lead by A. Aquila²

¹University of Wisconsin-Milwaukee, WI 53211, USA; ²LCLS, SLAC National Laboratory, CA 94025, USA

4. Single-particle Hit Finding

Manifold of raw data projected onto the first two Laplace-Beltrami eigenfunctions ψ_1 and ψ_2 reveals a parabolic characteristic.

Parabola reveals shot-to-shot intensity variations of XFEL pulses.

Diffusion Map identifies ~38,000 single-particle hits located at the lower edge of the manifold

The single-particle data set is used for orientation recovery after appropriate preprocessing steps

 ψ_1

5. Diffraction Volume from Manifold

- snapshot.
- snapshots is recovered.

volume via iterative phasing.

After removing imaging artifacts (background) noise, intensity variations, etc.), manifold of single-particle snapshots from PR772 virus is consistent with Icosahedral Wigner D-functions.

The object orientation is determined for each

□ 3D diffraction volume from ~38,000 2D

Resolution of the recovered 3D volume extends to edge of detector (11nm determined by FSC).

6. 3D Structure from Manifold □ 3D electron density obtained from diffraction

7. Validation of Orientation Recovery

- Fourier-Shell correlation (FSC) is computed between electron densities of two random subsets.
- Reveals statistically significant information out to detector edge (11nm).

8. Summary

- Demonstrated single-particle 3D structure recovery to detector edge
- Manifold embedding a powerful end-to-end platform for single-particle structure recovery

Acknowledgements

- This project was performed as part of the Single-Particle Imaging Initiative
- This work was funded by the National Science Foundation STC award number 1231306.

