Ultrafast charge density wave dynamics in 1T-TaS$_2$ investigated using ultrafast electron diffraction

L. Le Guyader1,2, T. Chase2, A. Reid2, R. Li2, X. Wang2, Dragan Mihailovic3, H. Dürr2

1European XFEL GmbH, Schenefeld, Germany
2SLAC National Accelerator Laboratory, Menlo Park, USA
3Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

Recent developments in the control of charge density wave (CDW), i.e. a combined periodic modulation of the electron density and a periodic lattice distortion, with either current or laser pulses could open the way to novel electronic devices.[1-4] The 1T polytype of TaS$_2$ displays a rich phase diagram, with a metallic normal phase above 545 K, an incommensurate (I) CDW phase above 350 K, a nearly commensurate (NC) CDW above 180 K, an insulating commensurate (C) CDW phase below and a metallic metastable hidden phase (H) accessible by either current or laser pulses.[3,4] While CDW systems are essentially thought as 2 dimensional systems, it is speculated that the insulating C-phase and conducting NC-phase properties are driven by the layer stacking order in the 3rd dimension.[5] How and on which time scale does the stacking order evolves upon femtosecond laser excitation ? Using the 3 MeV electron diffraction setup at SLAC,[6] we investigated the ultrafast dynamics of the C to I phase transition upon excitation by a femtosecond 800 nm wavelength laser pulse. Taking advantage of the nearly flat Ewald sphere displayed by 3 MeV electrons, we measured simultaneously a complete set of CDW satellites reflections, evidencing an unexpected different behavior between the layer stacking order and partial disorder.