Femtosecond tracking of structure and spin T. Harlang^{1,2}, K. Kjær^{1,2,3}, D. Leshchev⁴, J. Uhlig², K. Haldrup¹, K. Gaffney³, M. Wulff⁴, P. Persson², K. Wärnmark⁵, V. Sundström², M. M. Nielsen¹ et al. ¹Department of Physics, Technical University of Denmark, Lyngby, Denmark ² Department of Chemical Physics, Lund University, Lund, Sweden ³ PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA ⁴ European Synchrotron Radiation Facility, Grenoble, France ⁵ Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden This poster presents some recent results from synchrotron and XFEL studies of novel Fe-based photo-sensitizers for solar energy harvesting applications. In particular, the combination of scattering and spectroscopy in the same experiment allows us to simultaneously track the electronic and structural degrees of freedom.