
Spin-Polarization and Spectroscopic Validation of the Through-Bond Electron Transfer Mechanism of Redox Metalloproteins

<u>Patrick Frank</u>^{1,2}, Robert Szialgyi,³ Volker Gramlich,⁴ Hua-Fen Hsu,⁵ Britt Hedman,² and Keith O' Hodgson^{1,6}

- ¹ Department of Chemistry, Stanford University, Stanford CA, 94305 USA
- ² Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Stanford CA, 94309 USA
- ³ Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 and MTA-ELTE "Momentum" Chemical Structure/Function Laboratory, Budapest, 1117, Hungary
- ⁴ Laboratorium fuer Kristallographie, Sonneggstrasse 5, ETH-Zentrum, No. G 62, CH-8092 Zürich. Switzerland
- Department of Chemistry, National Cheng-Kung University, Tainan City 701, Taiwan
- ⁶ SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

Abstract: Sulfur K-edge XAS spectra of the monodentate sulfate complexes $[M^{II}(itao)(SO_4)(H_2O)_{0,1}]$ and $[Cu(Me_6tren)(SO_4)]$ exhibit well-defined pre-edge transitions at 2479.4 eV, 2479.9 eV, 2478.4 eV, and 2477.7 eV, respectively (M = Co, Ni, Cu), despite having no direct metal-sulfur bond. The sulfur K-edge XAS of $[Cu(itao)(SO_4)]$ uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge.

Ground state and time-dependent Density Functional Theory (TDDFT) calculations indicate electron transfer from coordinated sulfate to paramagnetic late transition metals, which produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin-orbitals, producing negative spin density at sulfate sulfur. Sulfur 3p character then mixes into ligand anti-bonding sigma

orbitals. This process produced the 2472.1 eV transition. This evidence of spinradical mixing from Cu(II) through sulfur and across an H-bond bridge into distant sigma-bond molecular orbitals of the itao ligand, provides the first direct spectroscopic confirmation of the through-bond electron transfer mechanism of redox-active metalloproteins.